Introduction to Neural Networks

Qiyang Hu UCLA Office of Advanced Research Computing Oct 28th, 2022

About this talk

- An introduction, an overview
 - The intuitive explanations on basic concepts
 - The advanced technical developments
- The outline
 - Machine learning and Deep learning
 - Neural network modeling in a general ML/DL workflow
- My DL talks in this and next quarters
 - Introduction to NN (today)
 - Learning PyTorch (next Wednesday)
 - Deep learning, the GBU (next Friday)
 - Special NN topics, (conv, gans, transformer, lstm?) (next quarter)

What is Machine Learning?

Traditional Programming

Machine Learning

What is Deep Learning?

Traditional Programming

Deep Learning

Simplified workflow for a deep learning project

Step 2

Step 3

Step 4

Step 1

Step 5

Step 1. Data Preparation and Processing

- The most time-consuming but the most *creative* job
 - Take ~66% time
 - Require experience
 - May need domain expertise
- Determines the upper limit for the goodness of DL
 - Models/Algorithms:
 just approach the upper limit

Anaconda's State of Data Science Report, 2020 (Source)

Copyright C MachineLearningMastery.com

More data-prep tasks might be needed

- Image Data Processing
 - Pixel scaling
 - Train-Time Augmentation
 - Test-Time Augmentation
 - Convolution and Flattening
- Data Tokenization
 - Breaking the sequence data into units
 - Mapping units to vectors
 - Aligning & padding sequences

- Data Embedding
 - Map data to lower-dim vectors
 - Sparse to dense
 - Merging diverse data
 - Preserve relationship
 - Techniques
 - Std Dimensionality Reduction
 - Word2Vec
 - Be part of the model training
 - Representation Learning

Embedding Dims $\approx \sqrt[4]{Possible Values}$

Workflow for a deep learning project

What is Neural Network?

• Recap for simple linear classification problem

Artificial Neuron and Biological Neuron

Neural Networks ~ piling/stacking logistic-regression classifiers

Deep neural networks

LeNet-5 (1998)

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	

Why deep?

- Shallow network can fit any function
 - Has less number of hidden layers
 - Has to be really "fat"

- Deep network is more efficient.
 - Exponentially fewer parameters (2017)
 - It can extract/build better features

A simpler classification of neural network types

- Feed forward neural networks (No cycle in node connections)
 - Fully connected network
 - Convolutional networks (CNNs)
- Recurrent networks (w/ directed cycle in node connections)
 - Fully recurrent NN
 - Recursive NN
 - Long short-term memory (LSTM)
 - Hopfield network (w/o hidden nodes)
- Symmetric networks (no directions in node connections)
 - Boltzmann Machines
 - RBM, DBM, SOM

Activation Function

- Sigmoid function:
- tanh function:

$$tanh(z) = rac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$$

 $\sigma(z) = \frac{1}{1 + \exp(-z)}$

- Rectified linear unit (ReLU)
 - \circ Softplus $f(x) = x^+ = \max(0,x)$

 y_i

- Leaky ReLU
- Exponential LU (ELUs)
- GELU
- Dynamic ReLU
- Softmax function:
- Maxout Network:
 - Learnable activation function

How to choose activation functions?

From Machine Learning Mastery Blog Post

Workflow for a deep learning project

How to measure the performance of the model?

- General name: objective function
- Measure the misfit of the model as a function of parameters
 - Criterion is to *minimize* the error functions
 - <u>Loss Function</u>, <u>Cost Function</u>: a penalty on difference between predictions and labels
- Evaluate the probability of *generating* training set
 - Criterion is to *maximize* the distribution likelihood as a function of parameters
 - <u>Maximum (log)-likelihood estimation</u>: minimize the divergence of distributions
- Regression losses and classification losses

Loss functions

• Generative/Predictive:

- Regression Loss
 - Mean Square Error / Quadratic Loss / L2 Loss:
 - Mean Absolute Error / L1 Loss:
 - Huber Loss
 - Quantile Loss
- Cross-Entropy Loss and variations
 - Log Loss / Negative Log Likelihood
 - Weighted CE / Balanced CE / Focal Loss
 - Dice Loss / IOU Loss / Tversky Loss
- Contrastive:

Ranking Loss/Margin Loss/Contrastive Loss/Triplet Loss

$$L_{MSE} = rac{1}{n} \sum_{i}^{n} (t_i - s_i)^2 \ L_{MAE} = rac{1}{n} \sum_{i}^{n} |t_i - s_i|$$

$$L_{CE} = -\sum_{i}^{C} t_i \log(s_i)$$

Workflow for a deep learning project

Training a DNN is an optimization problem

- We know how to compute $C(\theta)$, analytically or numerically.
- Start from an arbitrary initialization of θ_0 , and get an initial $C_0(\theta)$
- Apply optimization algorithm to minimize $C(\theta)$

Neural Network's Optimization

- Gradient Descent (a 1st-order approach) $\theta \leftarrow \theta \eta \nabla L(\theta)$
 - Most popular algorithm
 - Pros: simple and fast
 - Cons: sometimes hard to tune

Source Link

Qiyang Hu

Gradient-Descent Optimizers

- Stochastic GD / Mini-Batch GD
- Adding momentum:
 - Classical Momentum (CM)
 - Nesterov's Accelerated Gradient (NAG)
- Adaptive learning rate:
 - AdaGrad, AdaDelta, ...
 - RMSprop
- Combining the two
 - ADAM (as default in many libs)
- Beyond Adam:
 - Lookahead (<u>2019</u>), RAdam (<u>2019</u>)
 - AdaBound/AmsBound (ICLR 2019)
 - Range (<u>2019</u>)
 - AdaBelief (<u>NeurIPS 2020 Spotlight</u>)

Gradient descent vs Momentum vs AdaGrad vs RMSProp vs Adam

Higher Order Optimization Algorithms

• Newton-like methods (2nd-order methods)

$$heta \longleftarrow heta - rac{\ell'(heta)}{\ell''(heta)}$$

- Prons: fewer iterations, fewer hyperparameters
- Cons: much more **costly** in each iteration, more storing
- DFP/Broyden/BFGS/L-BFGS: a quasi-newton one
 - Good for low dimensional models
- Conjugate gradient (CG): between GD and Newton
 - moderately high dimensional models

Figure from Wikipedia

- Natural gradient descent methods $\nabla_{\theta} L(\theta) = F^{-1} \nabla_{\theta} L(\theta)$
 - K-FAC (Martens and Grosse, 2015)
 - Shampoo (Gupta, et al., 2018)
 - K-BFGS (Goldfarb, et al., NeurIPS 2020)

Using Gradient Descent to train DNN

Backpropagation: a game of chain rule

$$\begin{array}{c} \overbrace{x_{1} \ b_{1}}^{w_{1}} \overbrace{z_{1}}^{\sigma_{1}} \overbrace{a_{1} \ b_{2}}^{\sigma_{2}} \overbrace{z_{2}}^{\sigma_{2}} \overbrace{a_{2}}^{\sigma_{2}} \overbrace{a_{2}}^{\sigma_{2}} \cdots \cdot \underbrace{w_{L-1}}_{b_{L-1}} \overbrace{z_{L-1}}^{\sigma_{L-1}} \overbrace{a_{L-1}}^{w_{L}} \overbrace{b_{L}}^{\sigma_{L}} \overbrace{z_{L}}^{\sigma_{L}} \overbrace{b_{L}}^{\sigma_{L}} \overbrace{b_{L}} \overbrace{b_{L}}^{\sigma_{L}} \overbrace{b_{L}}^{\sigma_{L}} \overbrace{b_{L}}^{\sigma_{L}} \overbrace{b_{L}}^{\sigma_{L}} \overbrace{b_{L}}^{\sigma_{L}} \overbrace{b_{L}}^{\sigma_{L}} \overbrace{b_{L}}^{\sigma_{L}} \overbrace{b_{L}} \overbrace{b$$

1 Forward Pass

2 Backward Pass

Gradient vanishing/exploding in DL training

• Causes

After backprop

- Gradients in initial layers = Multiplication of Gradients at prior layers
- Small variation around 1 results in vanishing/exploding
- Techniques to resolve:
 - General: adjusting learning rate, dropout, batch normalization, layer normalization
 - For gradient exploding: gradient clipping, weight regularization
 - For gradient vanishing: activation function, proper initialization parameters, LSTM, skip connections

Backprop beyond the traditional neural networks

Gradient checkpointing (<u>source</u>)

Vanilla Backprop

Memory-poor Backprop

Checkpointed Backprop

• Multi-level optimization

• Deep implicit layers

Backprop beyond deep learning

- A different way to calculate the differentiation of iterative math expressions
 - Not approximate, unlike numerical differentiation
 - Exact, like manual or symbolic differentiation, but with constant overhead
- Automatic differentiation (algorithmic differentiation)
 - Problems constructed by differentiable directed graphs (e.g. NN)
 - General functional blocks (FF, conv, recurrent blocks, etc)
 - Modularized optimization: differentiable optimizations in layer levels
- Differentiable physics
 - Physics problems represented by a sequence of differentiable operators
 - Differentiable programming
 - Enables classical numerical algorithms
 - Beyond simple chained transformations to include more complex control structures

Workflow for a deep learning project

Step 1Step 2Step 3Step 4Step 5

Neural Network Evaluation

- Errors in regression (e.g. MSE):
 - From Model: features, algorithm \Rightarrow Bias
 - From Data: insufficient observations \Rightarrow Variance
 - From Noise
- Bias-Variance Trade-off

$$egin{aligned} & \mathtt{Var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \ & \mathbb{E}[(\hat{\mu}-\mu)^2] = \left(\mathbb{E}[\hat{\mu}-\mu]
ight)^2 + \mathrm{Var}[\hat{\mu}-\mu] \end{aligned}$$

Underfitting and Overfitting

- Underfitting: model too simple:
 - Diagnose:
 - cannot even fit the training data
 - training error ~ testing error
 - Ignore the variance in training data
 - Higher prediction bias
- Overfitting: model too complex
 - Diagnose:
 - well-fit for training data
 - large error for testing data
 - Over-interpret training data
 - More deviation from new data

How to prevent

- Redesign the model
- Increase model's complexity
- Add more features as input
- Training longer

- Get more data
 - collection or augmentation
- Reduce the model's complexity
- Regularization
 - Weight Regularization
 - Early stopping

Model Selection: K-fold Cross Validation

Qiyang Hu

Errors/scores in practice

OARC Workshop Survey http://bit.ly/3Dhp91H