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About this talk
● An introduction, an overview

○ The intuitive explanations on basic concepts
○ The advanced technical developments

● The outline
○ Machine learning and Deep learning
○ Neural network modeling in a general ML/DL workflow

● My DL talks in this and next quarters
○ Introduction to NN (today)
○ Learning PyTorch (next Wednesday)
○ Deep learning, the GBU (next Friday)
○ Special NN topics, (conv, gans, transformer, lstm?) (next quarter)
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What is Machine Learning?
Traditional Programming      Machine Learning
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What is Machine Learning?
Traditional Programming Deep Learning
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Simplified workflow for a deep learning project
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Step 1. Data Preparation and Processing

Anaconda’s State of Data Science Report, 2020 (Source)

● The most time-consuming 
but the most creative job

○ Take ~66% time
○ Require experience
○ May need domain expertise

● Determines the upper limit 
for the goodness of DL

○ Models/Algorithms: 
just approach the upper limit 

https://www.anaconda.com/state-of-data-science-2020
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● Data Embedding
○ Map data to lower-dim vectors

■ Sparse to dense 
■ Merging diverse data
■ Preserve relationship

○ Techniques
■ Std Dimensionality Reduction
■ Word2Vec
■ Be part of the model training

○ Representation Learning

More data-prep tasks might be needed

● Data Tokenization
○ Breaking the sequence data into units
○ Mapping units to vectors
○ Aligning & padding sequences

● Image Data Processing
○ Pixel scaling
○ Train-Time Augmentation
○ Test-Time Augmentation
○ Convolution and Flattening
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Workflow for a deep learning project
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What is Neural Network?
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Artificial Neuron and Biological Neuron 
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Neural Networks ~ piling/stacking logistic-regression classifiers
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● LeNet-5 (1998)

● AlexNet (2012)
○ 8 layers

● VGGNet (2014) 
○ 19 layers

● GoogLeNet (2014)
○ 22 layers

● ResNet (2015)
○ 152 layers
○ Highway Net (2016) and DenseNet (2018)

● ReZero (2020): >100 transformer layer and > 10,000 fully connected layers. 

Deep neural networks 
from ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
https://medium.com/@smallfishbigsea/a-walk-through-of-alexnet-6cbd137a5637
https://medium.com/coinmonks/paper-review-of-vggnet-1st-runner-up-of-ilsvlc-2014-image-classification-d02355543a11
https://medium.com/coinmonks/paper-review-of-googlenet-inception-v1-winner-of-ilsvlc-2014-image-classification-c2b3565a64e7
https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8
https://arxiv.org/pdf/1505.00387
https://arxiv.org/pdf/1608.06993
https://arxiv.org/pdf/2003.04887
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Why deep? 
● Shallow network can fit any function

○ Has less number of hidden layers
● Deep network is more efficient.

○ Exponentially fewer parameters (2017)
○ It can extract/build better features○ Has to be really “fat” 

https://pdfs.semanticscholar.org/f594/f693903e1507c33670b89612410f823012dd.pdf
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Deep neural networks 
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A simpler classification of neural network types
● Feed forward neural networks (No cycle in node connections)

○ Fully connected network
○ Convolutional networks (CNNs)

Input
Layer

Hidden
Layer

Output
Layer

● Recurrent networks (w/ directed cycle in node connections)
○ Fully recurrent NN
○ Recursive NN
○ Long short-term memory (LSTM)
○ Hopfield network (w/o hidden nodes)

● Symmetric networks (no directions in node connections)
○ Boltzmann Machines

■ RBM, DBM, SOM
Visible
Units

Hidden
Units



Qiyang Hu

Activation Function
● Sigmoid function:

● Rectified linear unit (ReLU)

● Maxout Network:
○ Learnable activation function

● Softmax function:

○ Softplus
○ Leaky ReLU
○ Exponential LU (ELUs)
○ GELU
○ Dynamic ReLU 

● tanh function:
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How to choose activation functions?

For hidden layers For output layers

From Machine Learning Mastery Blog Post

https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
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Workflow for a deep learning project
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● General name: objective function

● Measure the misfit of the model as a function of parameters
○ Criterion is to minimize the error functions
○ Loss Function, Cost Function: a penalty on difference between predictions and labels

● Evaluate the probability of generating training set
○ Criterion is to maximize the distribution likelihood as a function of parameters
○ Maximum (log)-likelihood estimation: minimize the divergence of distributions

● Regression losses and classification losses

How to measure the performance of the model?
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Loss functions
● Generative/Predictive:

○ Regression Loss
■ Mean Square Error / Quadratic Loss / L2 Loss:
■ Mean Absolute Error / L1 Loss:
■ Huber Loss
■ Quantile Loss

○ Cross-Entropy Loss and variations 
■ Log Loss / Negative Log Likelihood
■ Weighted CE / Balanced CE / Focal Loss
■ Dice Loss / IOU Loss / Tversky Loss

● Contrastive:

○ Ranking Loss/Margin Loss/Contrastive Loss/Triplet Loss
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Workflow for a deep learning project
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Training a DNN is an optimization problem

● We know how to compute C(θ), analytically or numerically.
● Start from an arbitrary initialization of θ0, and get an initial C0(θ)
● Apply optimization algorithm to minimize C(θ)
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Neural Network’s Optimization
● Gradient Descent (a 1st-order approach)

Source Link

○ Most popular algorithm
■ Pros: simple and fast
■ Cons: sometimes hard to tune

https://www.kdnuggets.com/2019/03/neural-networks-numpy-absolute-beginners-part-2-linear-regression.html/2
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Gradient-Descent Optimizers
● Stochastic GD / Mini-Batch GD
● Adding momentum:

○ Classical Momentum (CM)
○ Nesterov's Accelerated Gradient (NAG)

● Adaptive learning rate:
○ AdaGrad, AdaDelta, ...
○ RMSprop

● Combining the two
○ ADAM (as default in many libs) 

Gradient descent vs Momentum vs 
AdaGrad vs RMSProp vs Adam

(Source)

● Beyond Adam:
○ Lookahead (2019), RAdam (2019)
○ AdaBound/AmsBound (ICLR 2019)
○ Range (2019)
○ AdaBelief (NeurIPS 2020 Spotlight)

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://arxiv.org/abs/1907.08610
https://arxiv.org/pdf/1908.03265
https://syncedreview.com/2019/03/07/iclr-2019-fast-as-adam-good-as-sgd-new-optimizer-has-both/
https://arxiv.org/abs/1908.00700v2
https://arxiv.org/abs/2010.07468
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Higher Order Optimization Algorithms
● Newton-like methods (2nd-order methods)

■ Prons: fewer iterations, fewer hyperparameters
■ Cons: much more costly in each iteration, more storing

○ DFP/Broyden/BFGS/L-BFGS: a quasi-newton one
■ Good for low dimensional models

○ Conjugate gradient (CG): between GD and Newton
■ moderately high dimensional models 

GD

Newton

Figure from Wikipedia

● Natural gradient descent methods
○ K-FAC (Martens and Grosse, 2015)
○ Shampoo (Gupta, et al., 2018)
○ K-BFGS (Goldfarb, et al., NeurIPS 2020)

https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
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Using Gradient Descent to train DNN

Millions of parameters!

How to compute the 
gradient vector with 
millions of elements 
efficiently?
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Backpropagation: a game of chain rule
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Gradient vanishing/exploding in DL training
● Causes

● Techniques to resolve:
○ General: adjusting learning rate, dropout, batch normalization, layer normalization
○ For gradient exploding: gradient clipping, weight regularization
○ For gradient vanishing: activation function, proper initialization parameters, LSTM, skip connections
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○ Gradients in initial layers = Multiplication of Gradients at prior layers
○ Small variation around 1 results in vanishing/exploding

After backprop
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Backprop beyond the traditional neural networks
● Gradient checkpointing (source)

Vanilla Backprop

Memory-poor Backprop

Checkpointed Backprop

● Multi-level optimization

● Deep implicit layers

https://github.com/cybertronai/gradient-checkpointing
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Backprop beyond deep learning
● A different way to calculate the differentiation of iterative math expressions

○ Not approximate, unlike numerical differentiation 
○ Exact, like manual or symbolic differentiation, but with constant overhead

● Automatic differentiation (algorithmic differentiation)
○ Problems constructed by differentiable directed graphs (e.g. NN)
○ General functional blocks (FF, conv, recurrent blocks, etc)
○ Modularized optimization: differentiable optimizations in layer levels

● Differentiable physics
○ Physics problems represented by a sequence of differentiable operators
○ Differentiable programming

■ Enables classical numerical algorithms
■ Beyond simple chained transformations to include more complex control structures



Qiyang Hu

Workflow for a deep learning project
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Neural Network Evaluation
● Errors in regression (e.g. MSE):

○ From Model: features, algorithm ⇒ Bias
○ From Data: insufficient observations ⇒ Variance
○ From Noise

● Bias-Variance Trade-off
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● Underfitting: model too simple:
○ Diagnose: 

■ cannot even fit the training data
■ training error ~ testing error

○ Ignore the variance in training data
○ Higher prediction bias

● Overfitting: model too complex 
○ Diagnose: 

■ well-fit for training data 
■ large error for testing data 

○ Over-interpret training data
○ More deviation from new data

Underfitting and Overfitting
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How to prevent
● Redesign the model
● Increase model’s complexity
● Add more features as input
● Training longer

● Get more data
○ collection or augmentation

● Reduce the model’s complexity
● Regularization

○ Weight Regularization
○ Early stopping

Underfitting

Overfitting
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Model Selection: K-fold Cross Validation

Complete Training Data Testing Data

Select the model with minimum      and re-run the complete training data

                                Training DataValidation Set

Validation Set

Validation Set

Model 1:

Model 2:

Model n:

Sklearn.model_selection.cross_val_score or Skorch

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
https://github.com/dnouri/skorch
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Errors/scores in practice

            Training Set Testing Set Testing Set

Public Private

Validation Set

Error:

Score:
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OARC Workshop Survey 

http://bit.ly/3Dhp91H 

http://bit.ly/3Dhp91H

