Learning PyTorch

Qiyang Hu UCLA Office of Advanced Research Computing Nov 2nd, 2022

Qiyang Hu

About this talk

• The outline

- Understanding deep learning framework
- Introduction to PyTorch
- Four modules in PyTorch (tensor, autograd, optim, nn)
- Code examples
- My DL talks in this and next quarters
 - Introduction to NN (last Friday)
 - Learning PyTorch (Today)
 - Deep learning, the GBU (Friday)
 - Special NN topics, (conv, gans, transformer, lstm?) (next quarter)

Coding Neural Networks

• From Scratch

Coding Neural Networks

From PyTorch

Coding Neural Networks

• From Keras (TF2.x) and Scikit-Learn

Deep Learning Frameworks

High-level Models

for tasks of Computer Vision (Convnets), NLP (transformer, diffusion models, etc.)

NN Components

Neural Network constructs/layers, activation function, optimizers, loss functions, metrics

Autodiff Engine

Workflows of JVP (forward) and VJP (reverse) to allocate/record the "differential" variables

Multidimensional Array

Data layouts/storages and fundamental matrix-multiplication operations

Data Container Primitives

What is **PYT**⁶**RCH**

- An open-source Python-based deep learning framework
 - Replacement for Numpy with supporting GPUs, ROCm, TPUs
 - A full set of deep learning libraries

• History

- Lua-based Torch (2002 2011): TH, THC, THNN, THCUNN
- PyTorch 0.1 (2016): Python-based Torch
- PyTorch 1.0 (2018): merging Caffe2
- PyTorch moved to a new, independent PyTorch Foundation (Sept 2022)
- PyTorch 1.13 (Oct 28, 2022)
- PyTorch as a backend building block
 - Keras-like: PyTorch Lightening, PyTorch Ignite, tensorlayers, fast.ai
 - Advance-models-encapsulated: PyTorch Hubs, HuggingFace
 - For specific domains: FlowTorch, NiftyTorch, Flair, Kornia, Skorch, ELF, Detectron2

Why **PYT**⁶**RCH**

- Simplicity
 - Feels like Numpy
 - Consistent & great APIs
- Flexibility
 - Defining the model
 - Modifying the model
- Dynamic compute graphs
 - Immediate forward execution
 - Tape-based autograd
 - Destroyed immediately after backprop
- Model serialization and quantization
 - JIT, TorchScript, FX
 - Seamlessly switch between Modes, Distributed training, Mobile deployment

A graph is created on the fly

from torch.autograd import Variable

 W_h h W_x x

```
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))
```

"Py" and "Non-Py" in PyTorch

- PyTorch = Python + C/C++ + CUDA
 - Python extension objects in C/C++
 - Code base components:
 - The core Torch libraries: TH, THC, THNN, THCUNN
 - Vendor libraries: CuDNN, NCCL
 - Python Extension libraries
 - Additional 3rd-party libraries: NumPy, MKL, LAPACK, DLPack

Matrix Tensor 2-D 3-D

Tensors as building blocks

5

Vector

1-D

Scalar

*0-*D

torch.tensor([[[[1.0,1.0],[2.0,2.0]],[[3.0,3.0],[4.0,4.0]]],[[[5.0,5.0],[6.0,6.0]],[[7.0,7.0],[8.0,8.0]]]])

Tensor, Storage and Views

 $M(i, j) = \text{offset} + \text{stride}[0] \cdot i + \text{stride}[1] \cdot j$

Colab Hands-on

bit.ly/learning_pytorch

Automatic differentiation

Tensor and its metadata

• Autograd package

- Track all operations of tensors
- Compute derivatives analytically via back-prop
- Natively loaded in torch module
- Can be used in other scientific domains
- Simple usage
 - Set tensor's .requires_grad as TRUE
 - Tensor's creation function recorded in .grad_fn attribute
 - Gradient accumulated into .grad attribute
 - Call .backward()
- Stop a tensor from tracking history
 - Wrap the code block in with torch.no_grad()
 - .detach()

Qiyang Hu

Optimizers in PyTorch

- torch.optim package
 - Provides various optimization algorithms
 - Construct an optimizer object
 - optimizer = optim.SGD(model.parameters(), lr=0.01)
 - Need to move model to GPU before constructing optimizers
 - Must zero the gradient explicitly:
 - optimizer.zero_grad()
 - Take an optimization step:
 - optimizer.step() in GD method
 - optimizer.step(closure) in CG or LBFGS method
 - Optional: adjust the learning rate based on the number of epochs.
 - optimizer.lr_scheduler

Neural Networks in PyTorch

• <u>torch.nn</u> package

- Contains all building blocks for neural network related work
- nn.functional and nn.Module
- Define a network
 - For simple networks: concatenate modules through a nn.Sequential container
 - For complex networks: Subclassing nn.Module
- nn.Module package expects first index as batch size of samples
 - Need to reshape the input by .unsqueeze()
 - Use Dataset and DataLoader
- Loss functions in torch.nn:
 - nn.MSELoss (regression), nn.BCELoss (binary classification), nn.CrossEntropyLoss (multiclass classification)

Initialization in PyTorch

- Weight initialization workflow:
 - Determine which layer uses which initialization methods (**from torch.nn.init**)
 - After instantizing the model, run the initialization function
- Initialization methods in PyTorch:
 - Constant initialization: constant_, eye_
 - Random initialization: uniform_, normal_
 - Xavier initialization: (xavier_uniform_, xavier_normal_)
 - Kaiming initialization(kaiming_uniform_, kaiming_normal_)
 - Special requirement initialization: orthogonal_, sparse_
- Default initialization in PyTorch:
 - A uniform distribution bounded by 1/sqrt(in_features)
 - May need a customized initialization strategy for specific problem (e.g. training with 2nd-order gradients)

OARC Workshop Survey http://bit.ly/3Wo6Alu