
Learning PyTorch

Qiyang Hu
UCLA Office of Advanced Research Computing

Nov 2nd, 2022

Qiyang Hu

About this talk

● The outline
○ Understanding deep learning framework
○ Introduction to PyTorch
○ Four modules in PyTorch (tensor, autograd, optim, nn)
○ Code examples

● My DL talks in this and next quarters
○ Introduction to NN (last Friday)
○ Learning PyTorch (Today)
○ Deep learning, the GBU (Friday)
○ Special NN topics, (conv, gans, transformer, lstm?) (next quarter)

Qiyang Hu

Coding Neural Networks
● From Scratch

Data
Preparation

 Neural Network
 Construction

Parameter
Initialization

Activation
Function

Forward
Pass

Backward
Pass

 Training

Loss
Function

Optimizer

Iterations
(epochs, batches)

Qiyang Hu

Coding Neural Networks
● From PyTorch

Data
Preparation

 Neural Network
 Construction

Parameter
Initialization

Activation
Function

Forward
Pass

Backward
Pass

 Training

Loss
Function

Optimizer

Iterations
(epochs, batches)

Qiyang Hu

Coding Neural Networks
● From Keras (TF2.x) and Scikit-Learn

Data
Preparation

 Neural Network
 Construction

Parameter
Initialization

Activation
Function

Forward
Pass

Backward
Pass

 Training

Loss
Function

Optimizer

Iterations
(epochs, batches)

Qiyang Hu

NN Models
High-level Models

for tasks of Computer Vision (Convnets), NLP
(transformer, diffusion models, etc.)

Deep Learning Frameworks

NN Components
NN Components

Neural Network constructs/layers, activation
function, optimizers, loss functions, metrics

Automatic Differentiation
Autodiff Engine

Workflows of JVP (forward) and VJP (reverse)
to allocate/record the “differential” variables

Data Container Primitives
Multidimensional Array

Data layouts/storages and fundamental
matrix-multiplication operations

Qiyang Hu

What is PyTorch?
● An open-source Python-based deep learning framework

○ Replacement for Numpy with supporting GPUs, ROCm, TPUs
○ A full set of deep learning libraries

● History
○ Lua-based Torch (2002 - 2011): TH, THC, THNN, THCUNN
○ PyTorch 0.1 (2016): Python-based Torch
○ PyTorch 1.0 (2018): merging Caffe2
○ PyTorch moved to a new, independent PyTorch Foundation (Sept 2022)
○ PyTorch 1.13 (Oct 28, 2022)

● PyTorch as a backend building block
○ Keras-like: PyTorch Lightening, PyTorch Ignite, tensorlayers, fast.ai
○ Advance-models-encapsulated: PyTorch Hubs, HuggingFace
○ For specific domains: FlowTorch, NiftyTorch, Flair, Kornia, Skorch, ELF, Detectron2

Qiyang Hu

Why PyTorch?
● Simplicity

○ Feels like Numpy
○ Consistent & great APIs

● Flexibility
○ Defining the model
○ Modifying the model

● Dynamic compute graphs
○ Immediate forward execution
○ Tape-based autograd
○ Destroyed immediately after backprop

● Model serialization and quantization
○ JIT, TorchScript, FX

■ Seamlessly switch between Modes, Distributed training, Mobile deployment

Qiyang Hu

“Py” and “Non-Py” in PyTorch

● PyTorch = Python + C/C++ + CUDA
○ Python extension objects in C/C++
○ Code base components:

■ The core Torch libraries:
TH, THC, THNN, THCUNN

■ Vendor libraries:
CuDNN, NCCL

■ Python Extension libraries
■ Additional 3rd-party libraries:

NumPy, MKL, LAPACK, DLPack

torch/

torch/csrc/

aten/src/Aten

c10/

(Front-end Python) api/

autograd/

jit/
(Python bindings)

(Tensor operator impl)

(Core abstractions)
native/

../TH,THC,...

tools/

test/

(code generation)

PyTorch Source

(C++ API)

(TorchScript)

Qiyang Hu

Tensors as building blocks

Scalar
0-D

Vector
1-D

Matrix
2-D

Tensor
3-D

Tensor
n-D

N indices

torch.tensor([[[[1.0,1.0],[2.0,2.0]],[[3.0,3.0],[4.0,4.0]]],[[[5.0,5.0],[6.0,6.0]],[[7.0,7.0],[8.0,8.0]]]])

Qiyang Hu

PyObjectPython List

M
E
M
O
R
Y

0.8

Tensor, Storage and Views
● Data and Metadata

height

width

depth

sizes (D,H,W)
dtype integer
device cuda:0
layout strided
strides (H*W,W,1)

● Contiguous & Unboxed

PyTorch
Tensors

● Size, offset, stride

9.4 2.1 6.0 3.5 0.8 7.4 1.9

Stride: (3, 1)
+1 -> Next Col (Stride[1]=1)

+3 -> Next Row (Stride[0]=3)

Shape: (2 , 3)
Cols

Rows

Offset=1

Stride: (1, 3)
Other tensor type: sparse,
quantized, encrypted, XLA …

Dense Strided Tensors

Qiyang Hu

Colab Hands-on

bit.ly/learning_pytorch

https://bit.ly/learning_pytorch

Qiyang Hu

Automatic differentiation
● Autograd package

○ Track all operations of tensors
○ Compute derivatives analytically via back-prop
○ Natively loaded in torch module
○ Can be used in other scientific domains

Tensor and its metadata

height

width

depth

sizes (D,H,W)
dtype integer
device cuda:0
layout strided
strides (H*W,W,1)
requires_grad True/False
grad
grad_fn

● Simple usage
○ Set tensor’s .requires_grad as TRUE

■ Tensor’s creation function recorded in .grad_fn attribute
■ Gradient accumulated into .grad attribute

○ Call .backward()

● Stop a tensor from tracking history
○ Wrap the code block in with torch.no_grad()
○ .detach()

Qiyang Hu

Optimizers in PyTorch
● torch.optim package

○ Provides various optimization algorithms

○ Construct an optimizer object
■ optimizer = optim.SGD(model.parameters(), lr=0.01)

○ Need to move model to GPU before constructing optimizers

○ Must zero the gradient explicitly:
■ optimizer.zero_grad()

○ Take an optimization step:
■ optimizer.step() in GD method
■ optimizer.step(closure) in CG or LBFGS method

○ Optional: adjust the learning rate based on the number of epochs.
■ optimizer.lr_scheduler

https://pytorch.org/docs/stable/optim.html?highlight=torch%20optim#module-torch.optim

Qiyang Hu

Neural Networks in PyTorch
● torch.nn package

○ Contains all building blocks for neural network related work
○ nn.functional and nn.Module

● Define a network
○ For simple networks: concatenate modules through a nn.Sequential container
○ For complex networks: Subclassing nn.Module

● nn.Module package expects first index as batch size of samples
○ Need to reshape the input by .unsqueeze()
○ Use Dataset and DataLoader

● Loss functions in torch.nn:
○ nn.MSELoss (regression), nn.BCELoss (binary classification),

nn.CrossEntropyLoss (multiclass classification)

https://pytorch.org/docs/stable/nn.html?highlight=torch%20nn#module-torch.nn

Qiyang Hu

Initialization in PyTorch
● Weight initialization workflow:

○ Determine which layer uses which initialization methods (from torch.nn.init)
○ After instantizing the model, run the initialization function

● Initialization methods in PyTorch:
○ Constant initialization: constant_, eye_
○ Random initialization: uniform_, normal_
○ Xavier initialization: (xavier_uniform_, xavier_normal_)
○ Kaiming initialization(kaiming_uniform_, kaiming_normal_)
○ Special requirement initialization: orthogonal_, sparse_

● Default initialization in PyTorch:
○ A uniform distribution bounded by 1/sqrt(in_features)
○ May need a customized initialization strategy for specific problem

(e.g. training with 2nd-order gradients)

Qiyang Hu

PyTorch Tensorflow

JAX

Qiyang Hu

OARC Workshop Survey

http://bit.ly/3Wo6Alu

http://bit.ly/3Wo6Alu

