
Qiyang Hu

Learning Convolutional
Neural Networks (1)

Qiyang Hu
UCLA Office of Advanced Research Computing

Feb 17th, 2023

Qiyang Hu

About this workshop
● An introduction, an overview

○ The intuitive explanations on basic concepts
○ The advanced technical developments
○ Hands-on Demos using PyTorch

● My DL talks
○ Last quarter:

■ Introduction to NN
■ Learning PyTorch
■ Deep learning, the GBU

○ This quarter:
■ Convolutional Neural Networks (today)
■ Data Aug & Transfer learning (next Friday)
■ Generative modeling via GANs (Mar 03, 2023)

Input

Deep Learning

Output

Convolutional
Neural

Networks
Algorithm

Input

Output

(Training) (Inference)

Qiyang Hu

In this talk bit.ly/LDL_repo

Image Data

● Dataset and data loading
● Image preprocessing

01

CNN Basics

● Origins & ideas
● CNN mechanism

02

CNN Variants

● Conv as feature extractor
● De-conv, 3d conv, …
● FCN and GCN

03

Demo

● CNN in pytorch
● Save/load pytorch model
● Setup of colab env

04

http://bit.ly/LDL_repo
http://bit.ly/LDL_repo

Qiyang Hu

In this talk

CNN Basics

● Origins & ideas
● CNN mechanism

Image Data

● Dataset and data loading
● Image preprocessing

Demo

● CNN in pytorch
● Save/load pytorch model
● Setup of colab env

CNN Variants

● Conv as feature extractor
● De-conv, 3d conv, …
● FCN and GCN

01 02

03 04

Qiyang Hu

Dogs vs. Cats Kaggle Challenge
● Redux: Kernels Edition

○ Submission scored by the probability of dogs using log loss

● Dataset
○ Training set: 25,000 dogs and cats images
○ Testing set: 12,500 images
○ Images with different sizes
○ Images are colored

Qiyang Hu

R

G

B
88 9 51 123

91 212 13 72

90 21 100 21

210 35 82 48

Digitalization for Color Images

129 67 87 5

32 22 10 121

90 21 69 52

210 35 82 39

2 33 7 98

41 133 11 52

90 21 69 4

210 35 82 34

Width

H
ei

gh
t

Channels

3-D Tensors

Qiyang Hu

Image data conversion in PyTorch
● PIL to convert JPG to PIL Image

○ pil.Image.open(path).convert('RGB')

Torchvision is a package for
computer vision, containing:

● Popular datasets
● Model architectures
● Image transformations

● Resize to the uniform sizes for all images
○ torchvision.transforms.Resize((150, 150))

● Convert to tensors:
○ torchvision.transforms.ToTensor()

■ Indexes (H × W × C) ⇒ (C × H × W)
■ Range [0, 255] ⇒ [0.0, 1.0]

Python Image Library (PIL)

● Pillow as newer versions
● Various image processing
● Per-pixel manipulations

Qiyang Hu

Datasets and Data loading
● Defining the dataset class

○ Subclassing torch.utils.data.Dataset
○ PyTorch dataset object requires 2 methods:

■ __len__()
■ __getitem__()

○ Wrapping conversions in __getitem__()

● Loading the dataset with torch.utils.data.DataLoader
○ Batching the data
○ Shuffling the data
○ Loading the data in parallel using multiprocessing workers

Qiyang Hu

How Neural Networks Will Proceed?

● Limitations for FC models
○ Not scale well with pixel numbers

■ 1024x1024 RGB image
One 1024-feature hidden layer

■ → 3 billion parameters
→ 12 GB ram for 32-bit floats
→ Hard to fit in a GPU

○ Not translation-equivariant
■ Shifting 1 pixel ⇝ Re-learn!

Image (5x5)

Output

Layer as
25-Vector

Related weights from
25x25 W-matrix

+

● Naive ways:
a. Matrices ⇒ Vectors
b. Fully connected (FC) networks

Qiyang Hu

In this talk

CNN Basics

● Origins & ideas
● CNN mechanism

Image Data

● Dataset and data loading
● Image preprocessing

Demo

● CNN in pytorch
● Save/load pytorch model
● Setup of colab env

CNN Variants

● Conv as feature extractor
● De-conv, 3d conv, …
● FCN and GCN

01 02

03 04

Qiyang Hu

Inspiration from Cognitive Neuroscience

V4
↗V1🠊V2

V3🠊V5
↘

Qiyang Hu

What is Convolution?
A way to combine 2 functions points by points.

All GIFs were from Grant Sanderson’s excellent
youtube video “But what is a convolution?” (link).

https://youtu.be/KuXjwB4LzSA

Qiyang Hu

For a list of
discrete values

All GIFs were from Grant Sanderson’s
excellent youtube video “But what is a
convolution?” (link).

https://youtu.be/KuXjwB4LzSA

Qiyang Hu

Example Input Image
Interactive Source

Identity
Blur Outline

Sharpen

https://setosa.io/ev/image-kernels/

Qiyang Hu

One Channel, One Filter

Qiyang Hu

Multiple Channels

Figure Source

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

Qiyang Hu

Stacking Multiple Filters (Feature Maps)

Figures from Aurélien Géron’s 1st Ed. Book Figure Source

https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1491962291/ref=pd_bxgy_14_3/131-6056397-7133643?_encoding=UTF8&pd_rd_i=1491962291&pd_rd_r=42e61b1a-e4ef-4633-be31-96408abf0e98&pd_rd_w=rfEYw&pd_rd_wg=wnP2Q&pf_rd_p=a2006322-0bc0-4db9-a08e-d168c18ce6f0&pf_rd_r=HWYPXCE8515B1FMRZ1P2&psc=1&refRID=HWYPXCE8515B1FMRZ1P2
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

Qiyang Hu

A Convolutional layer

Figure Source

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

Qiyang Hu

Pooling Layer

● Assuming downsampling will not lose
the major information. Figures from Aurélien Géron’s 1st Ed. Book

Figure Source

https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1491962291/ref=pd_bxgy_14_3/131-6056397-7133643?_encoding=UTF8&pd_rd_i=1491962291&pd_rd_r=42e61b1a-e4ef-4633-be31-96408abf0e98&pd_rd_w=rfEYw&pd_rd_wg=wnP2Q&pf_rd_p=a2006322-0bc0-4db9-a08e-d168c18ce6f0&pf_rd_r=HWYPXCE8515B1FMRZ1P2&psc=1&refRID=HWYPXCE8515B1FMRZ1P2
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

Qiyang Hu

Convolutional Neural Networks (CNNs)
● Origins in computer vision

○ Neocognitron: K. Fukushima (1980)
■ convolutional layers, and downsampling layers

○ Modern CNN: Yann LeCun et al. (1989)
■ backpropagation

8

6

9

9

flatten

Poolings to downsample FlatteningConvolutions to extract as tiles

● Steps in CNNs:
Activation

ReLU

FCN

Training by backpropagation

Qiyang Hu

Architecture of Convolutional Neural Networks

Figure Source

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Qiyang Hu

● LeNet-5 (1998)

● AlexNet (2012)
○ 8 layers

● VGGNet (2014)
○ 19 layers

● GoogLeNet (2014)
○ 22 layers

● ResNet (2015)
○ 152 layers
○ Highway Net (2016) and DenseNet (2018)

● ReZero (2020): >100 transformer layer and > 10,000 fully connected layers.

Deep neural networks (Slide from the workshop last quarter)
from ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
https://medium.com/@smallfishbigsea/a-walk-through-of-alexnet-6cbd137a5637
https://medium.com/coinmonks/paper-review-of-vggnet-1st-runner-up-of-ilsvlc-2014-image-classification-d02355543a11
https://medium.com/coinmonks/paper-review-of-googlenet-inception-v1-winner-of-ilsvlc-2014-image-classification-c2b3565a64e7
https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8
https://arxiv.org/pdf/1505.00387
https://arxiv.org/pdf/1608.06993
https://arxiv.org/pdf/2003.04887

Qiyang Hu

In this talk

CNN Basics

● Origins & ideas
● CNN mechanism

Image Data

● Dataset and data loading
● Image preprocessing

Demo

● CNN in pytorch
● Save/load pytorch model
● Setup of colab env

CNN Variants

● Conv as feature extractor
● De-conv, 3d conv, …
● FCN and GCN

01 02

03 04

Qiyang Hu

Convolutional layers as feature extractors

Style Transfer
Paper (2016)

Content representation
of a photograph

Style representation
of the artwork

Style transferred
art image

Try it by yourself
using Lucent!

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://colab.research.google.com/github/greentfrapp/lucent-notebooks/blob/master/notebooks/style_transfer.ipynb#scrollTo=b4yC2BoXUvpd

Qiyang Hu

Convolution and “Deconvolution”: Autoencoder

Qiyang Hu

3D Convolutions Dilated Convolutions

Qiyang Hu

Fully Convolutional Neural Networks (FCNs)
● From image classification to

semantic segmentation
○ Per-pixel classifications
○ CNN’s fully connection layers:

■ throw away spatial coordinate
■ ~ applying an img-size kernel

Subsampling Upsampling

Skip Layers

● Ideas in FCNs
○ Convolutionalization
○ Upsampling by deconvolution
○ Skip layers

● Similar ideas and variants:
○ R-FCN, Mask R-FCN, SSD, …

https://arxiv.org/pdf/1411.4038.pdf

Qiyang Hu

Graph Convolutional Neural Networks
● From images to graphs

○ Images: a special grid graph
■ Vertex: Pixel; Edges: indirectly connected to 4 neighbors

○ Graphs:
■ Embedding the info on both V + E

● Graph Neural Network:
○ Input: (X, A), Latents: (H, A)
○ Predictions over nodes, graph, edges

● Graph Convolutional Neural Network:
○ Update with a symmetric normalisation on Adj Matrix
○ Popularized by Kipf & Welling, ICLR 2017

●

Qiyang Hu

In this talk

CNN Basics

● Origins & ideas
● CNN mechanism

Image Data

● Dataset and data loading
● Image preprocessing

Demo

● CNN in pytorch
● Save/load pytorch model
● Setup of colab env

CNN Variants

● Conv as feature extractor
● De-conv, 3d conv, …
● FCN and GCN

01 02

03 04

Qiyang Hu

Construct CNN architecture for Dogs-vs.-Cats Problem

● 4 Convolution layers:
 torch.nn.Conv2d(in_channels, out_channels, kernel_size, ...)

○ Input size:
○ Output size:
○ Activation function: torch.nn.functional.relu(...)

● MaxPooling layer:
 torch.nn.max_pool2d(...)

○ Kernel size: 2
○ Default: stride=None, padding=0, dilation=1

● Flattened layer
○ Manually flattening tensor by views

● Dense (linear) layer
 torch.nn.Linear(in_features, out_features)

○ Units: 512 and 2
○ Activation: ‘relu’ and ‘softmax’

(148,148,32)

(74,74,32)
(72,72,64)

6272
(7,7,128)

(36,36,64)
(34,34,128)

(15,15,128)
(17,17,128)

https://pytorch.org/docs/stable/nn.html#conv2d
https://pytorch.org/docs/stable/nn.functional.html#relu
https://pytorch.org/docs/stable/nn.functional.html#max-pool2d
https://pytorch.org/docs/stable/nn.html#linear

Qiyang Hu

Save and Load the model in PyTorch
● Need to save the trained model

○ Colab’s active session time is limited.
○ Models can be re-used at user’s end (e.g. browser with tf.js or phone with tf.lite)

● PyTorch 3 core functions:
○ torch.save: saves a serialized object to disk
○ torch.load: deserializes pickled object files to memory
○ torch.nn.Module.load_state_dict: loads parameters using a deserialized state_dict

● Recommended usage (for inference):
○ torch.save(model.state_dict(), PATH)
○ model.load_state_dict(torch.load(PATH))
○ model.eval()

● Saving & loading a checkpoint for resuming training (link)

https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-a-general-checkpoint-for-inference-and-or-resuming-training

Qiyang Hu

Before running the colab demo in this workshop
1. Register a Kaggle account

○ Kaggle.com → “Register”

2. Create Kaggle API token and download json file
○ Sign in → Your Profile → “Account” → “Create New API Token”

3. Join the competition → “Join Competition”
○ Dogs-vs-Cats Challenge

https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition

Qiyang Hu

Colab Hands-on

bit.ly/LDL_cnn1

http://bit.ly/LDL_cnn1
http://bit.ly/LDL_cnn1
http://bit.ly/LDL_cnn1

Qiyang Hu

Questions to think about:
● How can we improve the performance of our CNNs model?

● Should we have to start from the scratch?

● Any guidelines to design a CNN model?
○ Kernel size? Channel number? Layer number?

● What’s the latest development of CNNs?

 See you next Friday!

Survey ⇒ bit.ly/3YEOLzf

http://bit.ly/survey_cnn1
http://bit.ly/survey_cnn1
http://bit.ly/3YEOLzf

