Learning Convolutional Neural Networks (1)

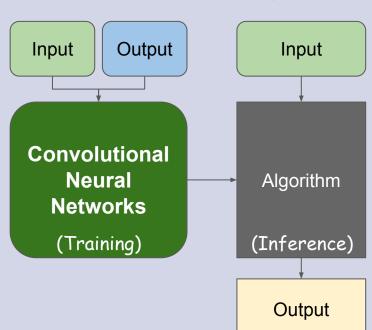
Qiyang Hu UCLA Office of Advanced Research Computing Feb 17th, 2023

About this workshop

- An introduction, an overview
 - The intuitive explanations on basic concepts
 - The advanced technical developments
 - Hands-on Demos using *PyTorch*

• My DL talks

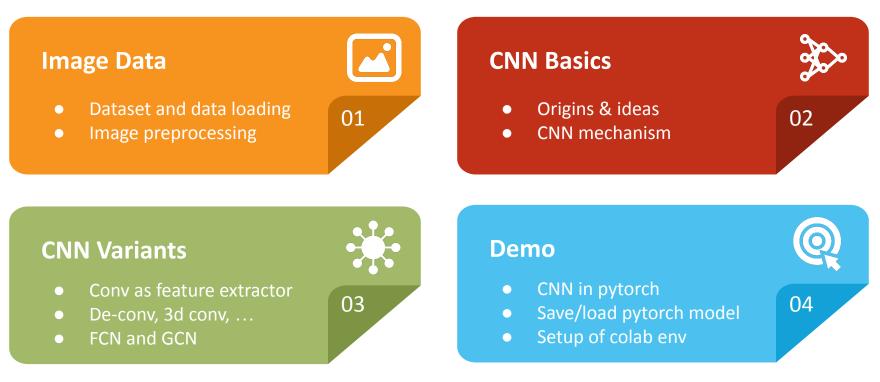
- Last quarter:
 - Introduction to NN
 - Learning PyTorch
 - Deep learning, the GBU
- This quarter:
 - Convolutional Neural Networks (today)
 - Data Aug & Transfer learning (next Friday)
 - Generative modeling via GANs (Mar 03, 2023)



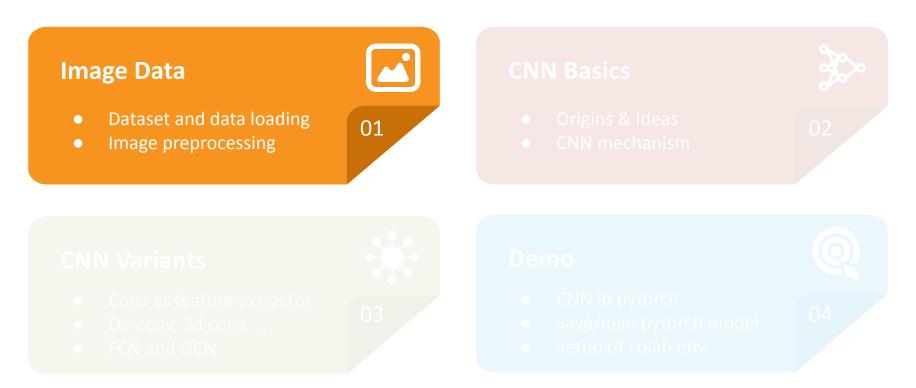
Deep Learning

In this talk

bit.ly/LDL_repo



In this talk



Dogs vs. Cats Kaggle Challenge

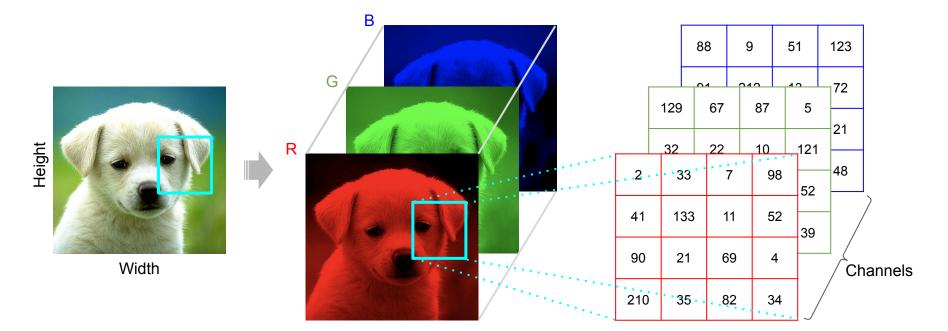
- Redux: Kernels Edition
 - Submission scored by the probability of dogs using log loss

$$L = -rac{1}{n}\sum_{i=1}^n \Bigl[y_i \log({\hat y}_i) + (1-y_i)\log(1-{\hat y}_i) \Bigr]$$

- Dataset
 - Training set: 25,000 dogs and cats images
 - Testing set: 12,500 images
 - Images with different sizes
 - Images are colored



Digitalization for Color Images



3-D Tensors

Image data conversion in PyTorch

- PIL to convert JPG to PIL Image
 - pil.Image.open(path).convert('RGB')

- Resize to the uniform sizes for all images
 - torchvision.transforms.Resize((150, 150))
- Convert to tensors:
 - torchvision.transforms.ToTensor()
 - $\blacksquare \quad \text{Indexes } (\mathsf{H} \times \mathsf{W} \times \mathsf{C}) \Rightarrow (\mathsf{C} \times \mathsf{H} \times \mathsf{W})$
 - Range [0, 255] ⇒ [0.0, 1.0]

Python Image Library (PIL)

- Pillow as newer versions
- Various image processing
- Per-pixel manipulations

Torchvision is a package for computer vision, containing:

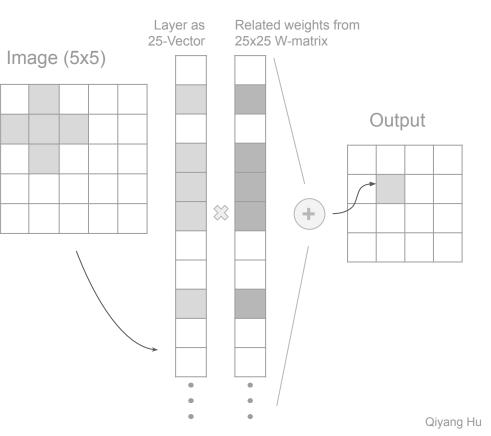
- Popular datasets
- Model architectures
- Image transformations

Datasets and Data loading

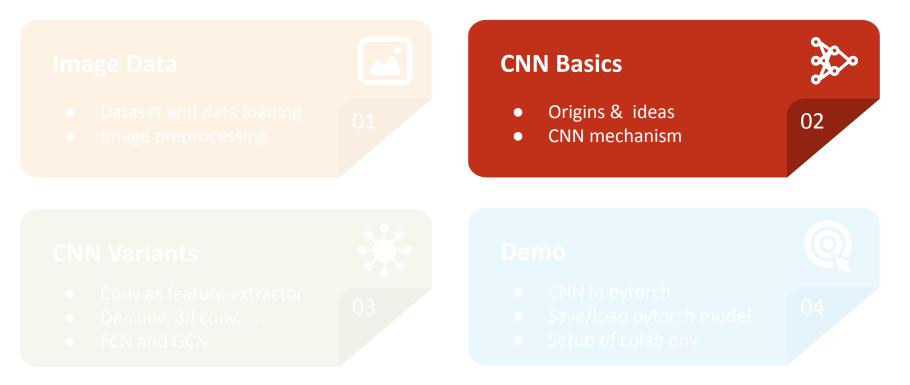
- Defining the dataset class
 - Subclassing torch.utils.data.Dataset
 - PyTorch dataset object requires 2 methods:
 - __len__()
 - __getitem_()
 - Wrapping conversions in __getitem__()
- Loading the dataset with torch.utils.dota.DotaLoader
 - Batching the data
 - Shuffling the data
 - Loading the data in parallel using multiprocessing workers

How Neural Networks Will Proceed?

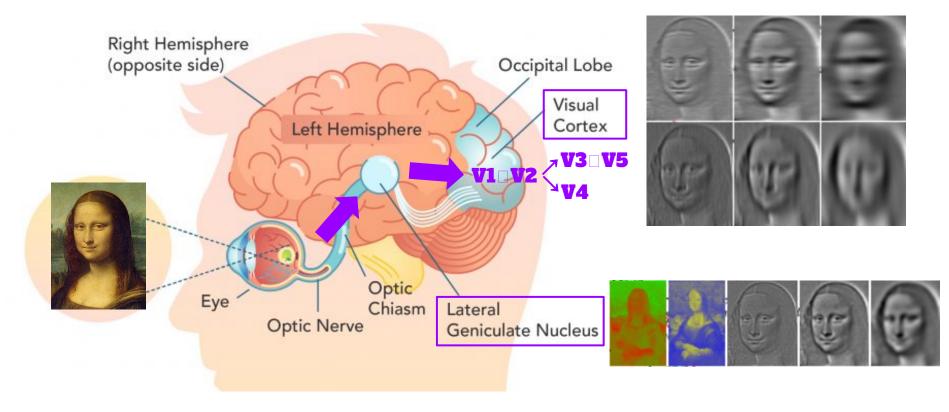
- Naive ways:
 - a. Matrices \Rightarrow Vectors
 - b. Fully connected (FC) networks
- Limitations for FC models
 - Not scale well with pixel numbers
 - 1024x1024 RGB image
 One 1024-feature hidden layer
 - → 3 billion parameters
 → 12 GB ram for 32-bit floats
 → Hard to fit in a GPU
 - Not translation-equivariant
 - Shifting 1 pixel → Re-learn!



In this talk

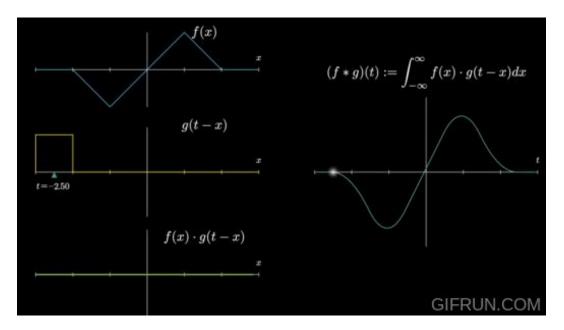


Inspiration from Cognitive Neuroscience

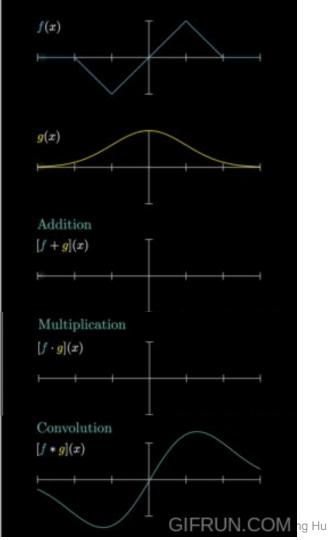


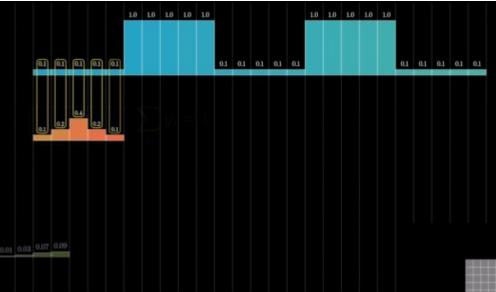
What is Convolution?

A way to combine 2 functions points by points.



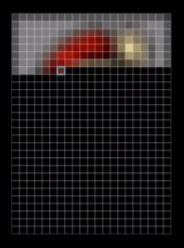
All GIFs were from Grant Sanderson's excellent youtube video "*But what is a convolution?*" (link).



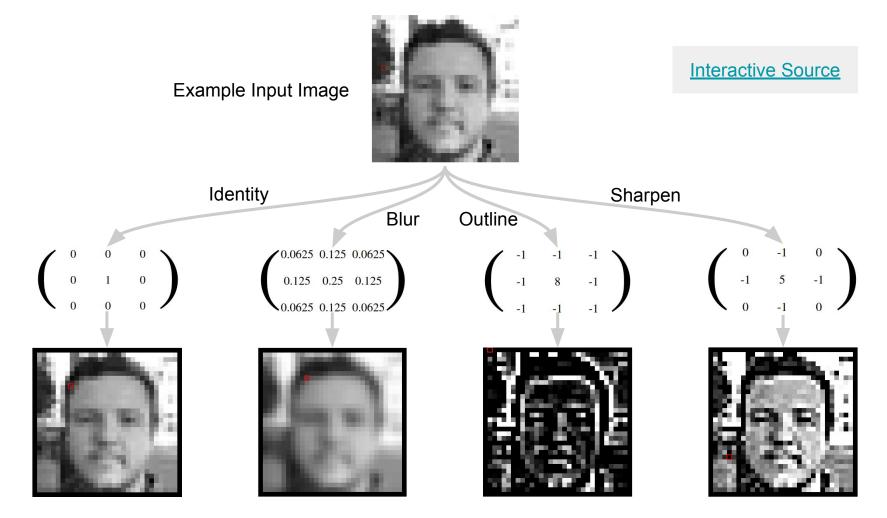


For a list of discrete values

All GIFs were from Grant Sanderson's excellent youtube video "*But what is a convolution?*" (link).



GIFRUN.COM



One Channel, One Filter

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	
0	101	98	104	102	100	
0	99	101	106	104	99	7
0	104	104	104	100	98	

Kernel Matrix

0	-1	0	
-1	5	-1	
0	-1	0	

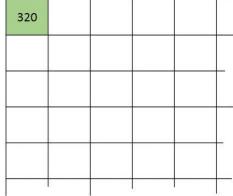


Image Matrix

0 * 0 + 0 * -1 + 0 * 0+0 * -1 + 105 * 5 + 102 * -1 +0 * 0 + 103 * -1 + 99 * 0 = 320

Output Matrix

Convolution with horizontal and vertical strides = 1

Multiple Channels

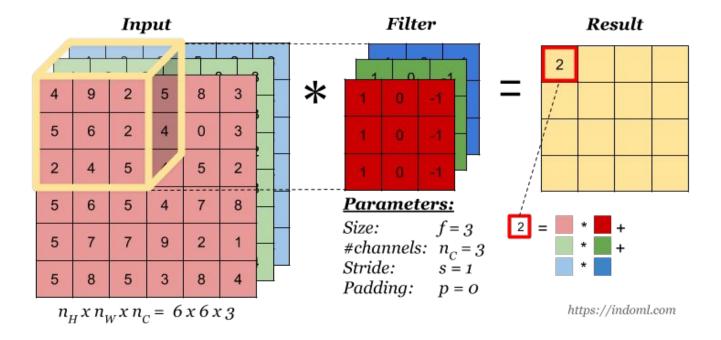
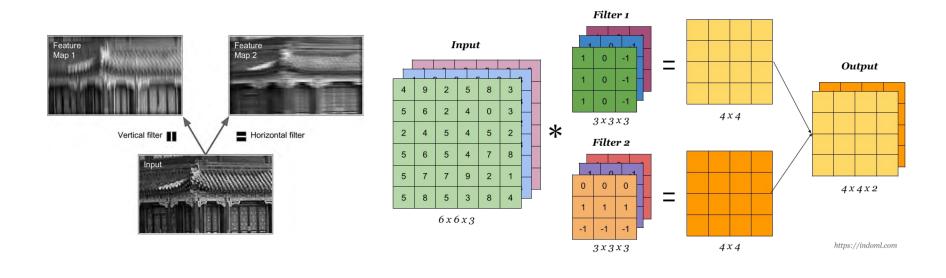


Figure Source

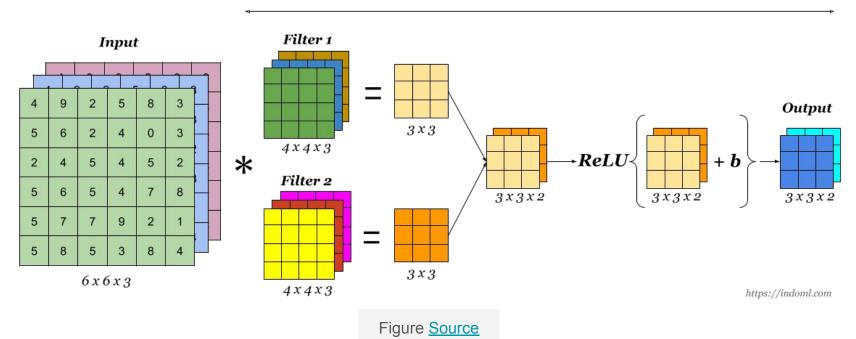
Stacking Multiple Filters (Feature Maps)



Figures from Aurélien Géron's 1st Ed. Book

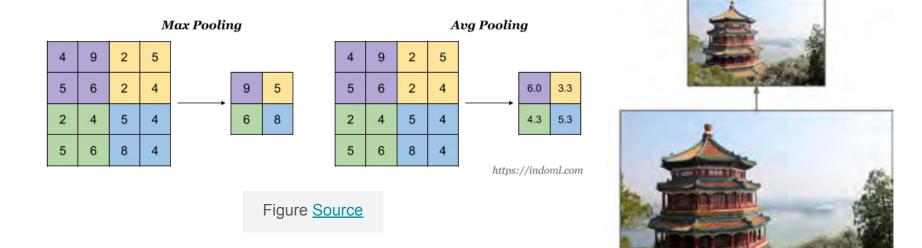
Figure Source

A Convolutional layer



A Convolution Layer

Pooling Layer

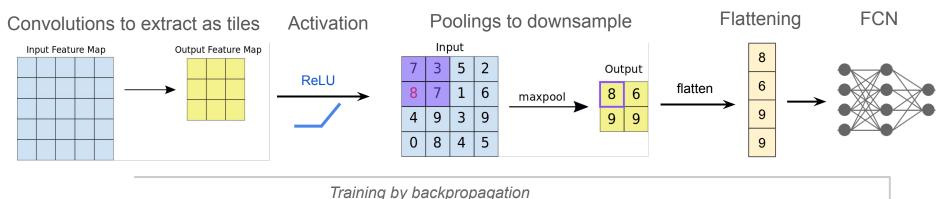


• Assuming downsampling will not lose the major information.

Figures from Aurélien Géron's 1st Ed. Book

Convolutional Neural Networks (CNNs)

- Origins in computer vision
 - Neocognitron: K. Fukushima (1980)
 - convolutional layers, and downsampling layers
 - Modern CNN: Yann LeCun et al. (1989)
 - backpropagation
- Steps in CNNs:



visual

retina -LGB -simple -complex

area

lower-order

higher-order

* association area ----

grandmother

cell ?

Architecture of Convolutional Neural Networks

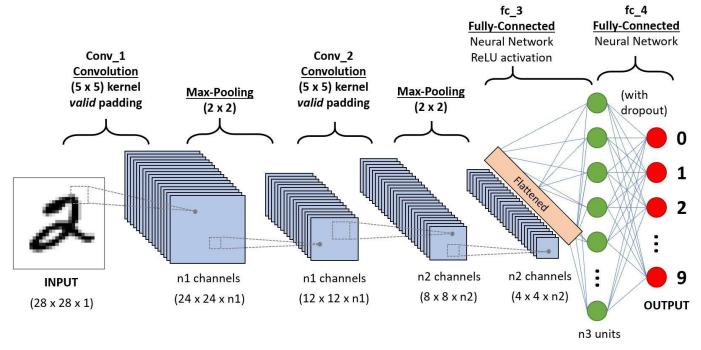


Figure <u>Source</u>

Deep neural networks

Slide from the workshop last quarter

from ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- LeNet-5 (1998)
- <u>AlexNet</u> (2012) 8 layers Ο
- VGGNet (2014) 19 layers 0
- GoogLeNet (2014) 22 layers 0

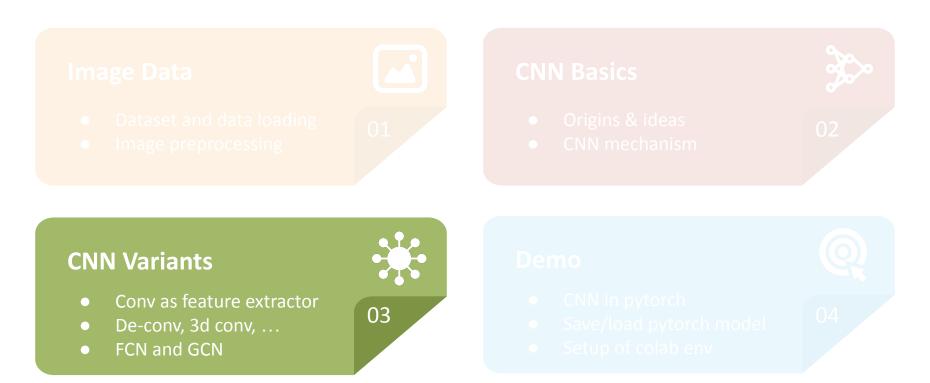
Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67% 4 million	
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3% 138 million	
2015	ResNet(152)	Kaiming He	1st	3.6%	

ResNet (2015)

Ο

- 152 layers Ο
- Highway Net (2016) and DenseNet (2018)
- <u>ReZero</u> (2020): >100 transformer layer and > 10,000 fully connected layers.

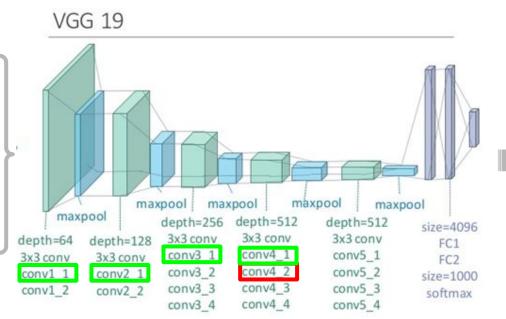
In this talk



Convolutional layers as feature extractors

Content representation of a photograph

Style representation of the artwork

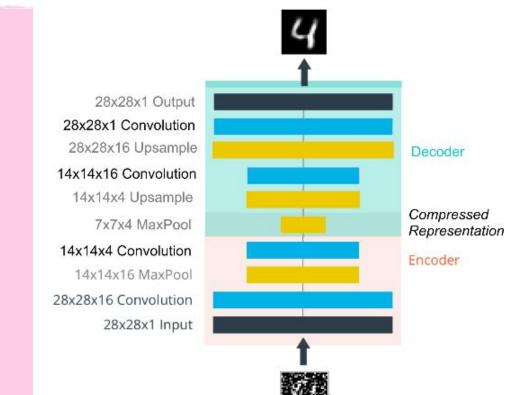


Style Transfer Paper (2016)

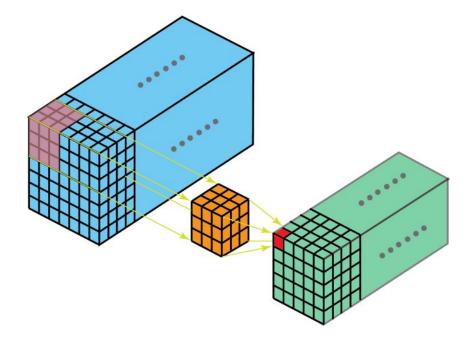
Style transferred art image

Try it by yourself using <u>Lucent</u>!

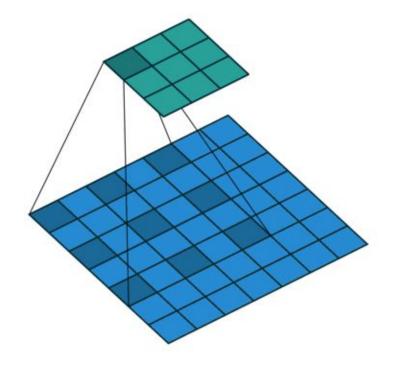
Convolution and "Deconvolution": Autoencoder



3D Convolutions

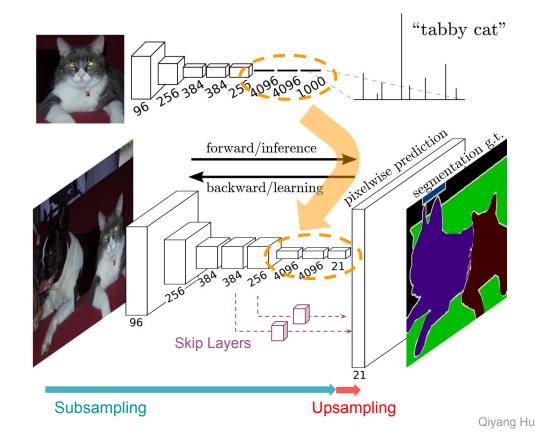


Dilated Convolutions



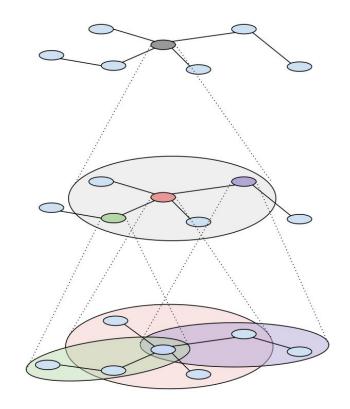
Fully Convolutional Neural Networks (FCNs)

- From image classification to semantic segmentation
 - Per-pixel classifications
 - CNN's fully connection layers:
 - throw away spatial coordinate
 - ~ applying an img-size kernel
- Ideas in <u>FCNs</u>
 - Convolutionalization
 - Upsampling by deconvolution
 - Skip layers
- Similar ideas and variants:
 - R-FCN, Mask R-FCN, SSD, ...

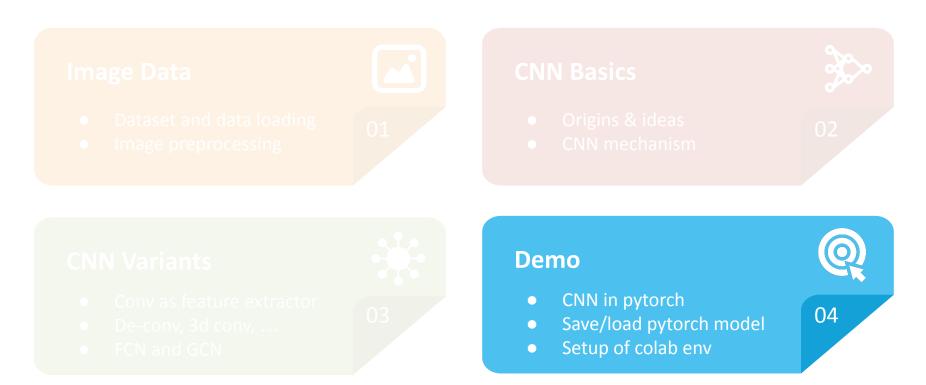


Graph Convolutional Neural Networks

- From images to graphs
 - Images: a special grid graph
 - Vertex: Pixel; Edges: indirectly connected to 4 neighbors
 - Graphs:
 - Embedding the info on both V + E
- Graph Neural Network:
 - Input: (X, A), Latents: (H, A)
 - Predictions over nodes, graph, edges
- Graph Convolutional Neural Network:
 - Update with a symmetric normalisation on Adj Matrix
 - Popularized by Kipf & Welling, ICLR 2017
- MPN \supset GAT \supset GCN \supset NP



In this talk



Construct CNN architecture for Dogs-vs.-Cats Problem

• 4 Convolution layers:

torch.nn.Conv2d(in_channels, out_channels, kernel_size, ...)

- Input size: (N, C_{in}, H, W)
- Output size: $(N, C_{out}, H_{out}, W_{out})$
- Activation function: torch.nn.functional.relu(...)
- MaxPooling layer:

torch.nn.max_pool2d(...)

- Kernel size: 2
- Default: stride=None, padding=0, dilation=1
- Flattened layer
 - Manually flattening tensor by views
- Dense (linear) layer

torch.nn.Linear(in_features, out_features)

- Units: 512 and 2
- Activation: 'relu' and 'softmax'

```
class CatAndDogNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels = 3, out_channels = 32, kernel_size=(3, 3))
        self.conv2 = nn.Conv2d(in_channels = 32, out_channels = 64, kernel_size=(3, 3))
        self.conv3 = nn.Conv2d(in_channels = 64, out_channels = 128, kernel_size=(3, 3))
        self.conv4 = nn.Conv2d(in_channels = 128, out_channels = 128, kernel_size=(3, 3))
        self.conv4 = nn.Conv2d(in_channels = 128, out_channels = 128, kernel_size=(3, 3))
        self.fc1 = nn.Linear(in_features= 128 * 7 * 7, out_features=512)
        self.fc2 = nn.Linear(in_features=512, out_features=2)
```

```
X = F.max_pool2d(X, 2) \longrightarrow (74.74.32)
    X = F.relu(self.conv2(X)) (72,72,64)
   x = F.max_{pool2d}(x, 2) \longrightarrow (36, 36, 64)
   x = F.relu(self.conv3(x)) (34,34,128)
   X = F.max_pool2d(X, 2) \longrightarrow (17, 17, 128)
   x = F.relu(self.conv4(x)) (15,15,128)
    X = F.max_pool2d(X, 2) \longrightarrow (7,7,128)
    X = X.view(-1, self.num flat features(X)) \longrightarrow 6272
   X = F.relu(self.fcl(X))
    X = self.fc2(X)
    return X
def num flat features(self, x):
    size = x.size()[1:] # all dimensions except the batch dimension
    num features = 1
                       # Get the products
    for s in size:
       num features *= s
```

return num features

Save and Load the model in PyTorch

- Need to save the trained model
 - Colab's active session time is limited.
 - Models can be re-used at user's end (e.g. browser with tf.js or phone with tf.lite)
- PyTorch 3 core functions:
 - torch.sove: saves a serialized object to disk
 - torch.load: deserializes pickled object files to memory
 - torch.nn.Module.load_state_dict: loads parameters using a deserialized state_dict
- Recommended usage (for inference):
 - torch.save(model.state_dict(), PATH)
 - model.load_state_dict(torch.load(PATH))
 - model.eval()
- Saving & loading a checkpoint for resuming training (<u>link</u>)

Before running the colab demo in this workshop

- 1. Register a Kaggle account
 - $\circ \quad \text{Kaggle.com} \rightarrow \text{``Register''}$
- 2. Create Kaggle API token and download json file
 - $\circ \quad \text{Sign in} \rightarrow \text{ Your Profile} \rightarrow \text{``Account''} \rightarrow \text{``Create New API Token''}$
- 3. Join the competition \rightarrow "Join Competition"
 - Dogs-vs-Cats Challenge

Colab Hands-on

Questions to think about:

- How can we improve the performance of our CNNs model?
- Should we have to start from the scratch?
- Any guidelines to design a CNN model?
 Kernel size? Channel number? Layer number?
- What's the latest development of CNNs?

See you next Friday!

