Qiyang Hu
UCLA Office of Advanced Research Computing
Feb 24 2023

Qiyafig’'Hu

Follow-up discussions from the last talk

e Is the first column a 1D representation of the original 2D array?

> By any customized way
> Extra work for sparse matrix
> By reshape(), view() or flatten()

Qiyang Hu

Follow-up discussions from the last talk

e Why are there 2 downsampling steps (Conv + Pooling)?

Convolutions to extract as tiles

Input Feature Map Output Feature Map

E—

Cases of max pooling might not be appropriate:

> The spatial resolution of the feature maps is already low

Activation

ReLU
—_—

_/

Input

3\

5

maxpool

Poolings to downsample

Output

8|6

ol ~| 0| d

7
9
8

1
3
4

Ul || N

> |n semantic segmentation or object detection tasks

> Many popular CNNs do not use pooling layers or use them sparingly.

919

Qiyang Hu

In this talk

Improving our model

e Data Augmentation
® Dropout & batch norm
e Demo

Transfer learning

e Transferring knowledge
e MobileNet
e Demo

Latest Developments

 bitly/LDL_repo |

ViT & Swin-T
ConvViT & ConvNeXt

Qiyang Hu

http://bit.ly/LDL_repo
http://bit.ly/LDL_repo

In this talk

Improving our model

e Data Augmentation
e Dropout & batch norm
e Demo

Qiyang Hu

Training and Validation Accuracy Training and Validation Loss

. 10 4 — Training Loss
QL“Ck Recap L] ~— Validation Loss
e Dogs-vs-Cats challenges . Lo |
o 25,000 training images
o 15,000 testing images .
e Construct our own CNNs
o 4 Conv layer blocks °%
o Flatten layer o6 :
o Dense layer I
e Overfitting 071 d i W
o Memorizing training set too much |
o Missing the essence knowledge 02 -
|
e How to improve? oo R |
raining Accuracy
o Need more training data —— Validation Accuracy | 00 1 I
o Need regularization 0 1 2 3B 4 50 0 {o 20 B 4 50

Qiyang Hu

Data and models: the bigger the better, really?

VGGNet DeepVideo GNMT GPT-3
|dentifying Identifying Video : :
Used For e ClEsE STy Translation Text Generation
Output 1000 Categories | 47 Categories French Text

Parameters

1.2M Images 1.1M Videos 6M Sentence 2TB of Internet
Data Size with assigned with assigned Pairs, 340M Text ~ 499
Category Category Words Billion Tokens

Qiyang Hu

From big size to smart size

e Using data augmentation Image Dataset
o To get more data with “no more”
o Various transformations to the available dataset r
o Prevent the irrelevant data Original Batch of images

e Types of data augmentation
o Offline augmentation
m Performing all the transformations beforehand
m Good for smaller dataset |
o | In-place augmentation
m Performing transformations in mini-batches Randomly Transformed image batches
m Preferred for larger dataset

y

Image Augmentation Object

e Data augmentation in PyTorch Train CNN in batches
o torchvision.transforms

Qiyang Hu

Augmentation Techniques

Input Image Augmented Images

e Flip

e Affine Transformation

o Rotation
o Zoom & Crop
o Translation

Gaussian Noise

ZCA whitening
Histogram Equalization
Feature-wise standardization

Neural Style Transfer (real-time web editing)

Qiyang Hu

https://twitter.com/maxxar92/status/1598717736728657925?s=20&t=-DzNb_wiF_mtYSVjAKaFyw

More Data Augmentation Techniques in CV tasks

e Random erasing: torchvision.transforms.RandomErasing(p=0.5, scale=(0.02, 0.33), ...)
o Cutout (masking out random sections): no label change
o Hide-and-seek, GridMask

o Object Region Mining with Adversarial Erasing ResNet-50 Mixup [45] Cutout[3] CutMix
N B -~ =) 3

e Mixup: soft overlapping

) _ _ Image
e Cutmix/Mosaic: hard masking
o Cutmix: 2 images mixed
o Mosaic: 4 images mixed Label Dog 1.0 22%(?55 Dog 1.0 Ié(:fé)f
e 3-D augmentation
Original GroundTruthAugmentor RandomFlip WorldScaling GlobalTranslateNoise FrustumDropout FrustumNoise RandomRotation RandomDropLaserPoints
== T & ‘ - oS SBIDID I

Qiyang Hu

Drop-out technique

Gradient vanishing during DNN training:

Imbalanced weights in network:

m Larger weights => well trained
m Smaller weights => not trained that much!

(@)

Dropout: randomly turns off some neurons
Forcing networks to train weak neurons

Dropout rate: default 50%
m Roughly double the iterations to converge
Training time in epoch is less

(@)

(@)

(@)

(@)

PyTorch: torch.nn.Dropout2d()

(@)

(@)

Srivastava 2014 paper

Variations: spatial dropout, etc.

Implemented by “Inverted dropout” technique
Apply to the corresponding layer(s)

{)

3
A
3
%

0 ‘\
'\\§

S
\
ol
Voo ¥
OK
, /ié‘}
7%

Qiyang Hu

http://jmlr.org/papers/v15/srivastava14a.html
https://pytorch.org/docs/stable/nn.html#dropout2d

Other training techniques in deep learning

e Reqularizer < nout)
o I1(Lasso), I2(Ridge), I1_I2(ElasticNet) in each layer p_/

m weight_decay flag for 12 in pytorch optimizers
. 2
e Early Stopping Convad
o Stop training when validation loss reach minimum :
. . batchnorm
e Batch Normalization I
o Normalize the data (input features) across batches in each mini-batch
o Add batch normalization before activation function RelU
m torch.nn.BatchNorm2D(num_features=n_chans])
e Skip connections tr

o Simple trick to add the input (conv1) to the output of a block of layers (conv3)

o Residual networks (K. He, 2015)
m Opened the door to hundreds-layer-depth networks (Highway Net, U-Net, Dense-Nets, ...)

Qiyang Hu

https://arxiv.org/pdf/1512.03385.pdf

Colab Hands-on

{ bit.ly/LDL_cnn2 }

http://bit.ly/LDL_cnn2
http://bit.ly/LDL_cnn2

Empirical Tips of CNNs

e Design

(@)

@)

e Hyperparameters:

(@)

Kernels

m Shape: square for visual tasks, rectangles for NLPs

m Size: odd x odd, (3x3, 5x5, 7x7)
Number of Conv Layers:

m Start with a few

m <100

Batch size: neither too big, nor too small
m start from 16, then 8 or 32
Learning rate: start from 0.01
m minibatch size * k = learning rate * k
Use batch normalization
Use random search
Stride length: DiffStride: learning it through backprop

Min validation loss achieved

(I)EZflect of learning rate on validation loss for different batch sizes

1=
s
o

o
w
[T=]

0.35

—— batch_32
—— batch_64
| = batch_128
—— batch 256

002 004 006 008 010
Learning rate

Source

016

Qiyang Hu

https://medium.com/deep-learning-experiments/effect-of-batch-size-on-neural-net-training-c5ae8516e57

In this talk

Transfer learning

e Transferring knowledge
e MobileNet
e Demo

Qiyang Hu

Transfer Learning

e Reusing the developed neural networks INPUT

o Greatly speed up our training

o Make it mobile Should freeze (\

or not freeze?

e Reused model = feature extractor

o Pre-trained on a popular generic dataset Pre-trained Model

o Transfer the knowledge

m Match the input
/

m Add new layers for specific data and tasks

e Two trends of pre-trained models
o Gigantic backbones: ResNet, BERT, GPTs
o Light-fast-efficient backbones:
m SqueezeNet, MobileNet v1, v2

m MobileNet v3, TinyYOLO, MnasNet, ShuffleNet,
CondenseNet, ESPNet, DiCENet, MixNet, EfficientNet

New Classifiers

OUTPUT

Qiyang Hu

MobileNet

e Very efficient CNNs (v2 paper & v3 paper) e, MoblileNet V3 MobileNet V2

o Depthwise separable convolutions i 20 \ '/ PY ‘
o Inverted residual with linear bottleneck @ (.“'
o Squeeze-and-excitation (SE) modules § 2 s %
<
e Loading the model: 360 S '
o MobileNet v2: 2 > ® MobileNet
m torchvision.models 2 50 : AlexNet
m PyTorch Hub %\ 45 ® GoogleNet
o MobileNet v3: E 40 e VeEIP

m large, small and quantized 10! 10 103 104
m torchvision.models.mobilenet_v3 ... MACs (M)
(MACs = Multiply-Accumulates)
e Modify the classifier layer

Figure from v2 paper and v3 paper
model.classifier[3] = torch.nn.Linear(1280, 2) 9 pap pap

Qiyang Hu

https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1905.02244.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1905.02244.pdf
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/hub/

Colab Hands-on

{ bit.ly/LDL_cnn2 }

http://bit.ly/LDL_cnn2
http://bit.ly/LDL_cnn2

In this talk

Latest Developments Q

S
e ConwViT & ConvNeXt 03

Qiyang Hu

ConvNet is all you need?

Renaissance since 2012
o AlexNet, VGGNet, ResNet,
MobileNet, EfficientNet, ...

o Rapid development due to
m “Sliding window”
m Translation equivariance

Challenges from NLP (2020)

o Vision Transformers (ViT),
Swin Transformers (Swin-T)
o Replacing ConvNet by:
m Split img to a seq of patches
m Permutation invariant via self-att

Revival since 2021

o ConViT (2021), ConvNeXt (2022)

o ConvNeXt v2 (2023):
w/ self-supervised learning capabilities

96-d

LN
Y

1x1, 96x3

+rel. pos. Yy win. shift

MSA, w7x7, H=3

X
& a0 o
()]

96-d

1x1, 384

GELU

X
- UT ol
m\

ResNet

ConvNeXt

256-d

<
[«2]
U

1x1,

BN, ReLU

<
[«2]
U

96-d
=)

Y
1x1, 384

GELU | 4

Y \
1x1, 96

y

E

\
d7x7, 96

LN

N
343
," BN, ReLU
/ Y
/ 1x1, 256
II 'BN
1 >D
1 ‘E;eLU
ImageNet-1K Acc.
90 1
I
88 I
I
86 I ConvNeXt
I Swin Transformer
I (2021)
84 | DeT
I (2020)
82 I @
|
80 ResNet
(2015)
2 @
7 @

ImageNet-1K Trained

\

\
|
1
|

|
I

ConvNeXt
Swin Transformer v

(2021)
ViT
(2020)

Diameter

SR (S| S | S|
4 8 16 256 GFLOPs

ImageNet-22K Pre-trained
Qiyang Hu

https://arxiv.org/pdf/2201.03545.pdf
https://arxiv.org/abs/2301.00808

Survey

£ bit.Iv/3IQKSSr J

Qiyang Hu

http://bit.ly/survey_cnn2
http://bit.ly/survey_cnn2
https://bit.ly/3IQKSSr

