
Qiyang Hu

Learning Convolutional
Neural Networks (2)

Qiyang Hu
UCLA Office of Advanced Research Computing

Feb 24th, 2023

Qiyang Hu

Follow-up discussions from the last talk
● Is the first column a 1D representation of the original 2D array?

+

➢ By any customized way
➢ Extra work for sparse matrix
➢ By reshape(), view() or flatten()

Qiyang Hu

Follow-up discussions from the last talk
● Why are there 2 downsampling steps (Conv + Pooling)?

Poolings to downsampleConvolutions to extract as tiles Activation

ReLU

Cases of max pooling might not be appropriate:
➢ The spatial resolution of the feature maps is already low
➢ In semantic segmentation or object detection tasks
➢ Many popular CNNs do not use pooling layers or use them sparingly.

Qiyang Hu

In this talk bit.ly/LDL_repo

Transfer learning

● Transferring knowledge
● MobileNet
● Demo

02

Improving our model

● Data Augmentation
● Dropout & batch norm
● Demo

01

Latest Developments

● ViT & Swin-T
● ConvViT & ConvNeXt 03

http://bit.ly/LDL_repo
http://bit.ly/LDL_repo

Qiyang Hu

In this talk

Improving our model

● Data Augmentation
● Dropout & batch norm
● Demo

01

Transfer learning

● Transferring knowledge
● MobileNet
● Demo

02

Latest Developments

● ViT & Swin-T
● ConvViT & ConvNeXt 03

Qiyang Hu

Quick Recap
● Dogs-vs-Cats challenges

○ 25,000 training images
○ 15,000 testing images

● Construct our own CNNs
○ 4 Conv layer blocks
○ Flatten layer
○ Dense layer

● Overfitting
○ Memorizing training set too much
○ Missing the essence knowledge

● How to improve?
○ Need more training data
○ Need regularization

Qiyang Hu

Data and models: the bigger the better, really?

VGGNet DeepVideo GNMT GPT-3

Used For Identifying
Image Category

Identifying Video
Category Translation Text Generation

Input Image Video English Text Text

Output 1000 Categories 47 Categories French Text Text

Parameters 140M ~100M 380M 175B

Data Size
1.2M Images
with assigned

Category

1.1M Videos
with assigned

Category

6M Sentence
Pairs, 340M

Words

2TB of Internet
Text ~ 499

Billion Tokens

Qiyang Hu

From big size to smart size
● Using data augmentation

○ To get more data with “no more”
○ Various transformations to the available dataset
○ Prevent the irrelevant data

Image Dataset

Original Batch of images

Image Augmentation Object

Randomly Transformed image batches

Train CNN in batches● Data augmentation in PyTorch
○ torchvision.transforms

● Types of data augmentation
○ Offline augmentation

■ Performing all the transformations beforehand
■ Good for smaller dataset

○ In-place augmentation
■ Performing transformations in mini-batches
■ Preferred for larger dataset

Qiyang Hu

Augmentation Techniques

● Flip

● Affine Transformation
○ Rotation
○ Zoom & Crop
○ Translation

● Gaussian Noise
● ZCA whitening
● Histogram Equalization
● Feature-wise standardization
● Neural Style Transfer (real-time web editing)

https://twitter.com/maxxar92/status/1598717736728657925?s=20&t=-DzNb_wiF_mtYSVjAKaFyw

Qiyang Hu

More Data Augmentation Techniques in CV tasks
● Random erasing: torchvision.transforms.RandomErasing(p=0.5, scale=(0.02, 0.33), ...)

○ Cutout (masking out random sections): no label change
○ Hide-and-seek, GridMask
○ Object Region Mining with Adversarial Erasing

● Mixup: soft overlapping

● Cutmix/Mosaic: hard masking
○ Cutmix: 2 images mixed
○ Mosaic: 4 images mixed

● 3-D augmentation

Qiyang Hu

Drop-out technique
● Gradient vanishing during DNN training:

○ Imbalanced weights in network:
■ Larger weights => well trained
■ Smaller weights => not trained that much!

● Dropout: randomly turns off some neurons
○ Forcing networks to train weak neurons
○ Dropout rate: default 50%

■ Roughly double the iterations to converge
Training time in epoch is less

○ Srivastava 2014 paper
○ Variations: spatial dropout, etc.

● PyTorch: torch.nn.Dropout2d()
○ Implemented by “Inverted dropout” technique
○ Apply to the corresponding layer(s)

http://jmlr.org/papers/v15/srivastava14a.html
https://pytorch.org/docs/stable/nn.html#dropout2d

Qiyang Hu

Other training techniques in deep learning
● Regularizer

○ l1(Lasso), l2(Ridge), l1_l2(ElasticNet) in each layer
■ weight_decay flag for l2 in pytorch optimizers

● Early Stopping
○ Stop training when validation loss reach minimum

● Batch Normalization
○ Normalize the data (input features) across batches in each mini-batch
○ Add batch normalization before activation function

■ torch.nn.BatchNorm2D(num_features=n_chans1)

● Skip connections
○ Simple trick to add the input (conv1) to the output of a block of layers (conv3)
○ Residual networks (K. He, 2015)

■ Opened the door to hundreds-layer-depth networks (Highway Net, U-Net, Dense-Nets, …)

ReLU

batchnorm

Conv2d

Input

+

https://arxiv.org/pdf/1512.03385.pdf

Qiyang Hu

Colab Hands-on

bit.ly/LDL_cnn2

http://bit.ly/LDL_cnn2
http://bit.ly/LDL_cnn2

Qiyang Hu

Empirical Tips of CNNs
● Design

○ Kernels
■ Shape: square for visual tasks, rectangles for NLPs
■ Size: odd x odd, (3x3, 5x5, 7x7)

○ Number of Conv Layers:
■ Start with a few
■ < 100

● Hyperparameters:
○ Batch size: neither too big, nor too small

■ start from 16, then 8 or 32
○ Learning rate: start from 0.01

■ minibatch size * k ⇒ learning rate * k
○ Use batch normalization
○ Use random search
○ Stride length: DiffStride: learning it through backprop Source

https://medium.com/deep-learning-experiments/effect-of-batch-size-on-neural-net-training-c5ae8516e57

Qiyang Hu

In this talk

Improving our model

● Data Augmentation
● Dropout & batch norm
● Demo

01

Transfer learning

● Transferring knowledge
● MobileNet
● Demo

02

Latest Developments

● ViT & Swin-T
● ConvViT & ConvNeXt 03

Qiyang Hu

Transfer Learning
● Reusing the developed neural networks

○ Greatly speed up our training
○ Make it mobile

● Reused model ⇒ feature extractor
○ Pre-trained on a popular generic dataset
○ Transfer the knowledge

■ Match the input
■ Add new layers for specific data and tasks

INPUT

Pre-trained Model

New Classifiers

OUTPUT

● Two trends of pre-trained models
○ Gigantic backbones: ResNet, BERT, GPTs
○ Light-fast-efficient backbones:

■ SqueezeNet, MobileNet v1, v2
■ MobileNet v3, TinyYOLO, MnasNet, ShuffleNet,

CondenseNet, ESPNet, DiCENet, MixNet, EfficientNet

Should freeze
or not freeze?

Qiyang Hu

(MACs = Multiply-Accumulates)

Figure from v2 paper and v3 paper

MobileNet
● Very efficient CNNs (v2 paper & v3 paper)

○ Depthwise separable convolutions
○ Inverted residual with linear bottleneck
○ Squeeze-and-excitation (SE) modules

● Loading the model:
○ MobileNet v2:

■ torchvision.models
■ PyTorch Hub

○ MobileNet v3:
■ large, small and quantized
■ torchvision.models.mobilenet_v3_…

● Modify the classifier layer
model.classifier[3] = torch.nn.Linear(1280, 2)

MobileNet V3 MobileNet V2

https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1905.02244.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1905.02244.pdf
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/hub/

Qiyang Hu

Colab Hands-on

bit.ly/LDL_cnn2

http://bit.ly/LDL_cnn2
http://bit.ly/LDL_cnn2

Qiyang Hu

In this talk

Improving our model

● Data Augmentation
● Dropout & batch norm
● Demo

01

Transfer learning

● Transferring knowledge
● MobileNet
● Demo

02

Latest Developments

● ViT & Swin-T
● ConvViT & ConvNeXt 03

Qiyang Hu

ConvNet is all you need?
● Renaissance since 2012

○ AlexNet, VGGNet, ResNet,
MobileNet, EfficientNet, …

○ Rapid development due to
■ “Sliding window”
■ Translation equivariance

● Challenges from NLP (2020)
○ Vision Transformers (ViT),

Swin Transformers (Swin-T)
○ Replacing ConvNet by:

■ Split img to a seq of patches
■ Permutation invariant via self-att

● Revival since 2021
○ ConViT (2021), ConvNeXt (2022)
○ ConvNeXt v2 (2023):

w/ self-supervised learning capabilities

Swin Transformer

ResNet ConvNeXt

https://arxiv.org/pdf/2201.03545.pdf
https://arxiv.org/abs/2301.00808

Qiyang Hu

Survey

bit.ly/3IQKSSr

http://bit.ly/survey_cnn2
http://bit.ly/survey_cnn2
https://bit.ly/3IQKSSr

