Learning Convolutional Neural Networks (2)

Qiyang Hu UCLA Office of Advanced Research Computing Feb 24th, 2023

Follow-up discussions from the last talk

 \succ

 \succ

 \succ

• Is the first column a 1D representation of the original 2D array?

Follow-up discussions from the last talk

• Why are there 2 downsampling steps (Conv + Pooling)?

Cases of max pooling might not be appropriate:

- > The spatial resolution of the feature maps is already low
- In semantic segmentation or object detection tasks
- Many popular CNNs do not use pooling layers or use them sparingly.

In this talk

bit.ly/LDL_repo

In this talk

- Data Augmentation
- Dropout & batch norm
- Demo

Transfer learning

- Transferring knowledge
- MobileNet
- Demo

.atest Developments

- ViT & Swin-T
- ConvViT & ConvNeXt

Quick Recap

- Dogs-vs-Cats challenges
 - 25,000 training images
 - 15,000 testing images
- Construct our own CNNs
 - 4 Conv layer blocks
 - Flatten layer
 - Dense layer
- Overfitting
 - Memorizing training set too much
 - Missing the essence knowledge
- How to improve?
 - Need more training data
 - Need regularization

Data and models: the bigger the better, *really*?

	VGGNet	DeepVideo	GNMT	GPT-3
Used For	Identifying Image Category	Identifying Video Category	Translation	Text Generation
Input	Image	Video	English Text	Text
Output	1000 Categories	47 Categories	French Text	Text
Parameters	140M	~100M	380M	175B
Data Size	1.2M Images with assigned Category	1.1M Videos with assigned Category	6M Sentence Pairs, 340M Words	2TB of Internet Text ~ 499 Billion Tokens

From big size to smart size

- Using data augmentation
 - To get more data with "no more"
 - Various transformations to the available dataset
 - Prevent the irrelevant data
- Types of data augmentation
 - Offline augmentation
 - Performing all the transformations beforehand
 - Good for smaller dataset
 - In-place augmentation
 - Performing transformations in mini-batches
 - Preferred for larger dataset
- Data augmentation in PyTorch
 - torchvision.transforms

Augmentation Techniques

- Flip
- Affine Transformation
 - Rotation
 - Zoom & Crop
 - Translation
- Gaussian Noise
- ZCA whitening
- Histogram Equalization
- Feature-wise standardization
- Neural Style Transfer (real-time web editing)

Input Image

Augmented Images

More Data Augmentation Techniques in CV tasks

- Random erasing: torchvision.transforms.RandomErasing(p=0.5, scale=(0.02, 0.33), ...)
 - Cutout (masking out random sections): no label change
 - Hide-and-seek, GridMask
 - Object Region Mining with Adversarial Erasing

RandomFlip

WING COURS

- Mixup: soft overlapping
- Cutmix/Mosaic: hard masking
 - Cutmix: 2 images mixed
 - Mosaic: 4 images mixed

GroundTruthAugmentor

• 3-D augmentation

Original

Drop-out technique

- Gradient vanishing during DNN training:
 - Imbalanced weights in network:
 - Larger weights => well trained
 - Smaller weights => not trained that much!
- Dropout: randomly turns off some neurons
 - Forcing networks to train weak neurons
 - Dropout rate: default 50%
 - Roughly double the iterations to converge Training time in epoch is less
 - Srivastava 2014 paper
 - Variations: spatial dropout, etc.
- PyTorch: torch.nn.Dropout2d()
 - Implemented by "Inverted dropout" technique
 - Apply to the corresponding layer(s)

(a) Standard Neural Net

(b) After applying dropout.

Other training techniques in deep learning

- Regularizer
 - I1(Lasso), I2(Ridge), I1_I2(ElasticNet) in each layer
 - weight_decay flag for I2 in pytorch optimizers
- Early Stopping
 - Stop training when validation loss reach minimum
- Batch Normalization
 - Normalize the data (input features) across batches in each mini-batch
 - Add batch normalization before activation function
 - torch.nn.BatchNorm2D(num_features=n_chans1)
- Skip connections
 - Simple trick to add the input (conv1) to the output of a block of layers (conv3)
 - Residual networks (K. He, 2015)
 - Opened the door to hundreds-layer-depth networks (Highway Net, U-Net, Dense-Nets, ...)

Colab Hands-on

bit.ly/LDL_cnn2

Empirical Tips of CNNs

- Design
 - Kernels
 - Shape: square for visual tasks, rectangles for NLPs
 - Size: odd x odd, (3x3, 5x5, 7x7)
 - Number of Conv Layers:
 - Start with a few
 - < 100
- Hyperparameters:
 - Batch size: neither too big, nor too small
 - start from 16, then 8 or 32
 - Learning rate: start from 0.01
 - minibatch size * $k \Rightarrow$ learning rate * k
 - Use batch normalization
 - Use random search
 - Stride length: DiffStride: learning it through backprop

Source

In this talk

Improving our model

- Data Augmentation
- Dropout & batch norm
- Demo

01

02

Transfer learning

- Transferring knowledge
- MobileNet
- Demo

.atest Developments

- ViT & Swin-T
- ConvViT & ConvNeXt

Transfer Learning

- Reusing the developed neural networks
 - Greatly speed up our training
 - Make it mobile
- Reused model ⇒ feature extractor
 - Pre-trained on a popular generic dataset
 - Transfer the knowledge
 - Match the input
 - Add new layers for specific data and tasks
- Two trends of pre-trained models
 - Gigantic backbones: ResNet, BERT, GPTs
 - Light-fast-efficient backbones:
 - SqueezeNet, MobileNet v1, v2
 - MobileNet v3, TinyYOLO, MnasNet, ShuffleNet, CondenseNet, ESPNet, DiCENet, MixNet, EfficientNet

MobileNet

- Very efficient CNNs (v2 paper & v3 paper)
 - Depthwise separable convolutions
 - Inverted residual with linear bottleneck
 - Squeeze-and-excitation (SE) modules
- Loading the model:
 - MobileNet v2:
 - torchvision.models
 - PyTorch Hub
 - MobileNet v3:
 - large, small and quantized
 - torchvision.models.mobilenet_v3_...
- Modify the classifier layer model.classifier[3] = torch.nn.Linear(1280, 2)

Colab Hands-on

bit.ly/LDL_cnn2

In this talk

Improving our model

- Data Augmentation
- Dropout & batch norm
- Demo

Transfer learning

- Transferring knowledge
- MobileNet
- Demo

Latest Developments

- ViT & Swin-T
- ConvViT & ConvNeXt

ជ

03

ConvNet is all you need?

- Renaissance since 2012
 - AlexNet, VGGNet, ResNet, MobileNet, EfficientNet, ...
 - Rapid development due to
 - "Sliding window"
 - Translation equivariance
- Challenges from NLP (2020)
 - Vision Transformers (ViT), Swin Transformers (Swin-T)
 - Replacing ConvNet by:
 - Split img to a seq of patches
 - Permutation invariant via self-att
- Revival since 2021
 - ConViT (2021), <u>ConvNeXt (2022)</u>
 - <u>ConvNeXt v2 (2023)</u>:

w/ self-supervised learning capabilities

ResNet

ConvNeXt

Survey

