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Generative = Creative = Imaginative/Unimaginable
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Generative Learning
Training Data (source) Generated Samples (source)

https://link.springer.com/article/10.1007/s10489-017-0916-1
https://arxiv.org/abs/1611.05013
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● Discriminative model                            •    Generative model

○ discriminate labels of data instances                         ￮   generate new data instances
○ try to draw boundaries in the data space                   ￮   try to model how data is placed

○ capture the conditional prob. p(Y | X)                       ￮   capture the joint prob. p(X, Y)
○ measure the misfit of points                       ￮   measure the misfit of prob distributions
○ learn the difference, ignore correlations ￮   learn distributions to capture correlations
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Maximum Likelihood

Implicit DensityExplicit Density

Tractable Density Approximate Density Markov Chain Direct

Variational Markov Chain

Diffusion GAN

Diagram inspired by Ian 
Goodfellow, Tutorial on 
Generative Adversarial 
Networks, 2017

Taxonomy of Generative Models

Inv Transform

Variational 
Autoencoder

Boltzmann 
Machine

Normalizing 
Flows

FVBNs:
○ NADE
○ MADE
○ PixelRNN/CNN

Autoregressive

Nonlinear ICA

https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/pdf/1701.00160.pdf
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Network Architectures of 4 Generative Models

Source

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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Generative Learning Trilemma

Source

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/
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Generative Adversarial Networks

“GAN-Father”

2019 StyleGAN2
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GAN: Adversarial
● Generator: generate plausible data
● Discriminator: distinguish the generator's fake data from real data

Image 
Source

https://developers.google.com/machine-learning/gan/gan_structure
https://developers.google.com/machine-learning/gan/gan_structure
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GAN: Network
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Training of GAN (1): update discriminator
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Training of GAN (2): update generator
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Training of GAN (3): iterate the 2 steps to converge
● Alternate the training periods

○ The discriminator trains for one or more epochs with locking generator
○ The generator trains for one or more epochs with locking discriminator
○ Repeat the above steps

● When to stop
○ While generator improves, discriminator performance gets worse

■ Generator becomes perfect ⇒ discriminator gets 50% accuracy

○ Feedback from discriminator is less meaningful over time
■ At some point discriminator starts giving completely random feedback
■ Generator starts to train on junk feedback, and its own quality may collapse

○ Convergence of GANs is unstable, very hard to identify
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The design logic behind the GAN structure 
● Why do we need discriminator ?

○ There are generative models that can learn without discriminator 
■ e.g. Variational Autoencoder (VAE)

○ Generator constructs the images in a bottom-up way
■ Very hard to capture the higher-level correlations 

○   The discriminator can guide the generator with correlation info in a criticizing way

● Why do we need generator?
○ There are generative models that can learn without generator

■ e.g. Energy based model
○ Discriminator constructs the images in a top-down way

■ Very hard to learn from constructing negative sampling
○ The generated instances become negative training examples for the discriminator.
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Standard Loss function for GAN
● Minimax Loss

○ Proposed in the original Goodfellow’s paper

Real image sample

Probability of the real image is real

Noise sample

Probability of the fake image is real

Fake image sample

○ Derives from a single measure of distance (BCE) between the real and generated distributions

● In practice
○ Discriminator loss:  maximize

○ Generator (not-saturating) loss: maximize

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
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○ https://github.com/soumith/ganhacks
○ Need experiences as always

No Pain, No GANs
● Discriminator shouldn’t be too good.

○ Good discriminator ⇒ always 100% accuracy
○ Generator has no positive case to follow for learning.
○ Mathematically, falling into the vanishing-gradient zone
○ Generator needs some success, esp. in early stages

● Discriminator shouldn’t be too bad.
○ Bad discriminator ⇒ random guess
○ Generator cannot get helpful feedback, esp. in late stages

  Training Tips For GANs

https://github.com/soumith/ganhacks
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Neural Networks for Generator and Discriminator
● Deep Convolutional Generative Adversarial Networks (DCGANs)

● Generator
○ Input: a std-norm latent vector
○   Strided 2D Convolutional-transpose layers
○   Batch norm layers
○   ReLU activations
○ Convtrans+Tanh before output
○ Output: a 3x64x64 RGB image

● Discriminator
○ Input: 3x64x64 input image
○ Strided convolution layers, batch norm layers, LeakyReLU activations
○ Conv+Sigmoid before output
○ Output: a scalar probability

https://arxiv.org/pdf/1511.06434.pdf
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Generator Implementation in PyTorch



Qiyang Hu

Discriminator Implementation in PyTorch
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Training loop

real_label ≠ 1 to make 
the discriminator not 
learn too quickly
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Today’s Demo — Generative Dog Images from Kaggle

● Experiment with creating puppy pics
○ A Kernels-only competition (total 10K prize, expired years ago)
○ Evaluation

■ Using a pre-trained model (Inception)
■ Calculating MiFID scores

● Using Stanford Dogs Dataset
○ 20,580 images with annotation info (120 breeds, bounding box)
○ Some dog pictures are very tricky

■ Only part of the dogs body
■ Having multiple dogs
■ Having multiple persons
■ Dogs may occupy <⅕ of the picture
■ With various texts (from memes, magazine, etc)
■ Even wild predators included

https://www.kaggle.com/c/generative-dog-images/overview/evaluation
http://vision.stanford.edu/aditya86/ImageNetDogs/
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Colab Hands-on

bit.ly/LDL_gan

http://bit.ly/LDL_gan
http://bit.ly/LDL_gan
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Using Transfer Learning for GANs

● StyleGAN from Nvidia
○ StyleGAN (2018), StyleGAN2 (2019)
○ StyleGAN3 (2021): w/ diffusion models
○ StyleGAN-T(2023)

● Animal Faces HQ v2
○ 15,000 images at 512×512 res.
○ Cat, dog and wildlife

● Test for the dog project:
○ StyleGAN3 pretrained model:

     stylegan3-r-afhqv2-512x512.pkl
○ AFHQv2 dogs (5000 images)
○ Request one A100 GPU from H2
○ Trained through “python train.py”
○ Ran 2 days with 500 epochs

Real

Fake 
Initial

Fake 
Trained
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A lot of different GANs!
● Various design of network structures

○ SAGANs ￮   InfoGANs ￮   BiGANs
○ Conditional GANS ￮   EB-GANs ￮   Triple-GANs
○ CycleGANs ￮   VAE-GANs ￮   …

● Various metrics for objective functions
○ WGANs ￮   Cramer GANs ￮   McGANs
○ LSGANs ￮   Fisher GANs ￮   HingeGANs
○ RGANs ￮   MMD GANs ￮   ...

● Combining the two
○ BEGAN ￮   MAGANs ￮   ...
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SAGAN: DCGANs + Self-Attention Layer (Zhang, et al. 2018)
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https://arxiv.org/pdf/1805.08318.pdf
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Conditional GAN: generate images with specific class
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CycleGAN: unsupervised conditional GAN

Generator
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https://arxiv.org/pdf/1703.10593.pdf
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Some GAN loss function variations
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● Vanishing gradient

✔ Gradient Penalty
✔ Spectral Normalization

Challenges in GANs
● Mode collapse

Generator produces samples with a limited set of modes

✔ Wasserstein loss
✔ Unrolled and packing

● Convergence failure
✔ Adding noise to discriminator inputs
✔ Penalizing discriminator weights
✔ Relativistic metrics

● Result evaluation
✔ Inception Score
✔ Fréchet Inception Distance 

(FID, MiFID)

Source

https://arxiv.org/pdf/1611.02163.pdf
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Survey

bit.ly/41Glmq3

http://bit.ly/survey_gan
http://bit.ly/survey_gan

