Learning Generative Adversarial Networks

Qiyang Hu UCLA Office of Advanced Research Computing Mar 3rd, 2023

In this talk

bit.ly/LDL_repo

In this talk

Generative = Creative = Imaginative/Unimaginable

Qiyang Hu

Generative Learning

Training Data (source)

Generated Samples (source)

- Discriminative model
 - discriminate labels of data instances
 - try to draw boundaries in the data space

VS

- capture the conditional prob. p(Y | X)
- measure the misfit of points
- learn the difference, ignore correlations

- Generative model
 - generate new data instances
 - try to model how data is placed

- capture the joint prob. p(X, Y)
- measure the misfit of prob distributions
- learn distributions to capture correlations

Taxonomy of Generative Models

Network Architectures of 4 Generative Models

<u>Source</u>

Generative Learning Trilemma

<u>Source</u>

In this talk

Generative Learning

- What is generative learning
- Types of generative models

GAN Introduction

- What is GAN?
- Training of GANs

Coding GANs

- DCGANs
- In-house GANs in PyTorch
- GANs using Transfer Learning

ANs World

- o SAGAN, CGAN, CycleGAN
- Challenges in GANs

02

Generative Adversarial Networks

"GAN-Father"

Ian Goodfellow @goodfellow_ian · Jan 14, 2019 4.5 years of GAN progress on face generation. arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434 arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196 arxiv.org/abs/1812.04948 \sim

2019 StyleGAN2

GAN: Adversarial

- Generator: generate plausible data
- **Discriminator**: distinguish the generator's fake data from real data

Image Source

Training of GAN (1): update discriminator

Training of GAN (2): update generator

Training of GAN (3): iterate the 2 steps to converge

- Alternate the training periods
 - The discriminator trains for one or more epochs with locking generator
 - The generator trains for one or more epochs with locking discriminator
 - Repeat the above steps
- When to stop
 - While generator improves, discriminator performance gets worse
 - Generator becomes perfect \Rightarrow discriminator gets 50% accuracy
 - Feedback from discriminator is less meaningful over time
 - At some point discriminator starts giving completely random feedback
 - Generator starts to train on junk feedback, and its own quality may collapse
 - Convergence of GANs is unstable, very hard to identify

The design logic behind the GAN structure

- Why do we need discriminator ?
 - There <u>are</u> generative models that can learn without discriminator
 - e.g. Variational Autoencoder (VAE)
 - Generator constructs the images in a bottom-up way
 - Very hard to capture the higher-level correlations
 - The discriminator can guide the generator with correlation info in a criticizing way
- Why do we need generator?
 - There <u>are</u> generative models that can learn without generator
 - e.g. Energy based model
 - Discriminator constructs the images in a top-down way
 - Very hard to learn from constructing negative sampling
 - The generated instances become negative training examples for the discriminator.

Standard Loss function for GAN

- Minimax Loss
 - Proposed in the original Goodfellow's paper

Real image sample
 Noise sample
 Fake image sample

 min
$$G$$
 D
 $V(D,G) = \mathbb{E}_{x \sim p_{data}}(x) (\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))]$

 Probability of the real image is real
 Probability of the fake image is real

- Derives from a single measure of distance (<u>BCE</u>) between the real and generated distributions
- In practice

$$\circ$$
 Discriminator loss: maximize $rac{1}{n}\sum_{i=0}^n \log(D(x_i)) + rac{1}{n}\sum_{i=0}^n \log[1-D(G(z_i))]$

• Generator (not-saturating) loss: maximize $\frac{1}{n} \sum_{i=0}^{n} \log[D(G(z_i))]$

No Pain, No GANs

- Discriminator shouldn't be too good.
 - Good discriminator \Rightarrow always 100% accuracy
 - Generator has no positive case to follow for learning.
 - Mathematically, falling into the vanishing-gradient zone
 - Generator needs some success, esp. in early stages
- Discriminator shouldn't be too bad.
 - Bad discriminator \Rightarrow random guess
 - Generator cannot get helpful feedback, esp. in late stages

Training Tips For GANs

- <u>https://github.com/soumith/ganhacks</u>
- Need experiences as always

\rightarrow		In the second		
Input Normalizing	Tune the learning rates	A modified loss function	BatchNorm	Add noise to inputs
 normalize the images to (-1, 1) Tanh as the last layer of the generator output 	 Make D not improve too fast Make D not improve too slow 	 Generator loss function to be max log(D) Flip labels when training generator: real = fake, fake=real 	Construct different mini-batches for real and generated samples	 Perturb the both real and fake images when training D Decay the noise over time.
Implemented in Demo: Yes	Implemented in Demo: Yes	Implemented in Demo: Ves	Implemented in Demo: Vas	Implemented in Demo: No
			implementeu în Demo. Tes	implemented in Demo. No
			ADAM	
Avoid Sparse Gradients: ReLU, MaxPool	Use Soft and Noisy Labels	Use DCGAN or Hybrid	ADAM Use the ADAM Optimizer	Use Dropouts in G
Avoid Sparse Gradients: ReLU, MaxPool • LeakyRL is good for G and D • Use stride, not pooling	 Use Soft and Noisy Labels Real ~ Uniform(0.7, 1.2) Fake ~ Uniform(0.0, 0.3) 	 Use DCGAN or Hybrid Use DCGAN if possible If not, use hybrid of KL + GAN or VAE + GAN 	ADAM Use the ADAM Optimizer optim.Adam rules.	Use Dropouts in G 4 Apply at both training and test time

Qiyang Hu

.

In this talk

- What is generative learning
- Types of generative models

- What is GAN?
- Training of GANs

- DCGANs
- In-house GANs in PyTorch
- GANs using Transfer Learning

03

Neural Networks for Generator and Discriminator

- Deep Convolutional Generative Adversarial Networks (DCGANs)
- Generator
 - Input: a std-norm latent vector
 - Strided 2D Convolutional-transpose layers
 - Batch norm layers
 - ReLU activations
 - Convtrans+*Tanh* before output
 - Output: a 3x64x64 RGB image
- Discriminator
 - Input: 3x64x64 input image
 - Strided convolution layers, batch norm layers, LeakyReLU activations
 - Conv+Sigmoid before output
 - Output: a scalar probability

Generator Implementation in PyTorch

```
class Generator(nn.Module):
   def init (self, nz=128, channels=3):
       super(Generator, self). init ()
       self.nz = nz
       self.channels = channels
       def convlayer(n input, n output, k size=4, stride=2, padding=0):
           block = [
                nn.ConvTranspose2d(n input, n output, kernel size=k size, stride=stride, padding=padding, bias=False),
               nn.BatchNorm2d(n output),
               nn.ReLU(inplace=True),
           return block
        self.model = nn.Sequential(
           *convlayer(self.nz, 1024, 4, 1, 0), # Fully connected layer via convolution.
           *convlayer(1024, 512, 4, 2, 1),
           *convlayer(512, 256, 4, 2, 1),
           *convlayer(256, 128, 4, 2, 1),
           *convlayer(128, 64, 4, 2, 1),
           nn.ConvTranspose2d(64, self.channels, 3, 1, 1),
           nn.Tanh()
   def forward(self, z):
       z = z.view(-1, self.nz, 1, 1)
       img = self.model(z)
       return img
```

Discriminator Implementation in PyTorch

```
class Discriminator(nn.Module):
   def init (self, channels=3):
        super(Discriminator, self). init ()
        self.channels = channels
       def convlayer(n input, n output, k size=4, stride=2, padding=0, bn=False):
           block = [nn.Conv2d(n input, n output, kernel size=k size, stride=stride, padding=padding, bias=False)]
           if bn:
                block.append(nn.BatchNorm2d(n output))
           block.append(nn.LeakyReLU(0.2, inplace=True))
           return block
        self.model = nn.Sequential(
           *convlayer(self.channels, 32, 4, 2, 1),
           *convlayer(32, 64, 4, 2, 1),
           *convlayer(64, 128, 4, 2, 1, bn=True),
           *convlayer(128, 256, 4, 2, 1, bn=True),
           nn.Conv2d(256, 1, 4, 1, 0, bias=False), # FC with Conv.
   def forward(self, imgs):
       logits = self.model(imgs)
       out = torch.sigmoid(logits)
       return out.view(-1, 1)
```

Training loop

output = netD(real_images)
errD_real = criterion(output, labels)
errD_real.backward()
D_x = output.mean().item()

train with fake noise = torch.randn(batch_size, nz, 1, 1, device=device) fake = netG(noise) labels.fill_fake_label output = netD(fake.detach()) errD fake = criterion(output. labels)

output = netD(fake.detach())
errD_fake = criterion(output, labels)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()

Today's Demo — Generative Dog Images from Kaggle

- Experiment with creating puppy pics
 - A Kernels-only competition (total 10K prize, expired years ago)
 - Evaluation
 - Using a pre-trained model (Inception)
 - Calculating MiFID scores
- Using <u>Stanford Dogs Dataset</u>
 - 20,580 images with annotation info (120 breeds, bounding box)
 - Some dog pictures are very *tricky*
 - Only part of the dogs body
 - Having multiple dogs
 - Having multiple persons
 - Dogs may occupy <1/5 of the picture</p>
 - With various texts (from memes, magazine, etc)
 - Even wild predators included

Colab Hands-on

bit.ly/**LDL_gan**

Using Transfer Learning for GANs

Fake Trained

• StyleGAN from Nvidia

- StyleGAN (2018), StyleGAN2 (2019)
- StyleGAN3 (2021): w/ diffusion models
- StyleGAN-T(2023)
- Animal Faces HQ v2
 - 15,000 images at 512×512 res.
 - Cat, dog and wildlife

• Test for the dog project:

- StyleGAN3 pretrained model: stylegan3-r-afhqv2-512x512.pkl
- AFHQv2 dogs (5000 images)
- Request one A100 GPU from H2
- Trained through "python train.py"
- Ran 2 days with 500 epochs

Real

In this talk

- What is generative learning
- Types of generative models

GAN Introduction

- What is GAN?
- Training of GANs

Coding GANs

- DCGANs
- In-house GANs in PyTorch
- GANs using Transfer Learning

A lot of different GANs!

- Various design of network structures
 - SAGANs Ο Conditional GANS 0

InfoGANs **EB-GANs** 0

0

CycleGANs 0

VAE-GANs 0

- BiGANs 0
- **Triple-GANs** 0

0

...

0 ...

- Various metrics for objective functions
 - **WGANs** Cramer GANs **McGANs** 0 0 Ο LSGANs Fisher GANs HingeGANs 0 0 Ο **RGANs** MMD GANs 0 0 Ο . . .
- Combining the two
 - BEGAN 0 MAGANs Ο

SAGAN: DCGANs + Self-Attention Layer (Zhang, et al. 2018)

Qiyang Hu

Conditional GAN: generate images with specific class

CycleGAN: *unsupervised* conditional GAN

Some GAN loss function variations

SGAN (non-saturating)

$$\begin{split} L_D^{SGAN} &= -\mathbb{E}_{x_r \sim \mathbb{P}}\left[\log\left(\text{sigmoid}(C(x_r))\right)\right] - \mathbb{E}_{x_f \sim \mathbb{Q}}\left[\log\left(1 - \text{sigmoid}(C(x_f))\right)\right] \\ L_G^{SGAN} &= -\mathbb{E}_{x_f \sim \mathbb{Q}}\left[\log\left(\text{sigmoid}(C(x_f))\right)\right] \end{split}$$

RSGAN

$$\begin{split} L_D^{RSGAN} &= -\mathbb{E}_{(x_r, x_f) \sim (\mathbb{P}, \mathbb{Q})} \left[\log(\text{sigmoid}(C(x_r) - C(x_f))) \right] \\ L_G^{RSGAN} &= -\mathbb{E}_{(x_r, x_f) \sim (\mathbb{P}, \mathbb{Q})} \left[\log(\text{sigmoid}(C(x_f) - C(x_r))) \right] \end{split}$$

RaSGAN

$$\begin{split} L_D^{RaSGAN} &= -\mathbb{E}_{x_r \sim \mathbb{P}} \left[\log \left(\tilde{D}(x_r) \right) \right] - \mathbb{E}_{x_f \sim \mathbb{Q}} \left[\log \left(1 - \tilde{D}(x_f) \right) \right] \\ L_G^{RaSGAN} &= -\mathbb{E}_{x_f \sim \mathbb{Q}} \left[\log \left(\tilde{D}(x_f) \right) \right] - \mathbb{E}_{x_r \sim \mathbb{P}} \left[\log \left(1 - \tilde{D}(x_r) \right) \right] \\ \tilde{D}(x_r) &= \text{sigmoid} \left(C(x_r) - \mathbb{E}_{x_f \sim \mathbb{Q}} C(x_f) \right) \\ \tilde{D}(x_f) &= \text{sigmoid} \left(C(x_f) - \mathbb{E}_{x_r \sim \mathbb{P}} C(x_r) \right) \end{split}$$

LSGAN

$$\begin{split} L_D^{LSGAN} &= \mathbb{E}_{x_r \sim \mathbb{P}} \left[(C(x_r) - 0)^2 \right] + \mathbb{E}_{x_f \sim \mathbb{Q}} \left[(C(x_f) - 1)^2 \right] \\ L_G^{LSGAN} &= \mathbb{E}_{x_f \sim \mathbb{Q}} \left[(C(x_f) - 0)^2 \right] \end{split}$$

RaLSGAN

$$\begin{split} L_D^{RaLSGAN} &= \mathbb{E}_{x_r \sim \mathbb{P}} \left[(C(x_r) - \mathbb{E}_{x_f \sim \mathbb{Q}} C(x_f) - 1)^2 \right] + \mathbb{E}_{x_f \sim \mathbb{Q}} \left[(C(x_f) - \mathbb{E}_{x_r \sim \mathbb{P}} C(x_r) + 1)^2 \right] \\ L_G^{RaLSGAN} &= \mathbb{E}_{x_f \sim \mathbb{P}} \left[(C(x_f) - \mathbb{E}_{x_r \sim \mathbb{P}} C(x_r) - 1)^2 \right] + \mathbb{E}_{x_r \sim \mathbb{P}} \left[(C(x_r) - \mathbb{E}_{x_f \sim \mathbb{Q}} C(x_f) + 1)^2 \right] \end{split}$$

HingeGAN

$$\begin{split} L_D^{HingeGAN} &= \mathbb{E}_{x_r \sim \mathbb{P}} \left[\max(0, 1 - C(x_r)) \right] + \mathbb{E}_{x_f \sim \mathbb{Q}} \left[\max(0, 1 + C(x_f)) \right] \\ \\ L_G^{HingeGAN} &= -\mathbb{E}_{x_f \sim \mathbb{Q}} \left[C(x_f) \right] \end{split}$$

RaHingeGAN

$$\begin{split} L_D^{HingeGAN} &= \mathbb{E}_{x_r \sim \mathbb{P}} \left[\max(0, 1 - \tilde{D}(x_r)) \right] + \mathbb{E}_{x_f \sim \mathbb{Q}} \left[\max(0, 1 + \tilde{D}(x_f)) \right] \\ L_G^{HingeGAN} &= \mathbb{E}_{x_f \sim \mathbb{P}} \left[\max(0, 1 - \tilde{D}(x_f)) \right] + \mathbb{E}_{x_r \sim \mathbb{Q}} \left[\max(0, 1 + \tilde{D}(x_r)) \right] \\ \tilde{D}(x_r) &= C(x_r) - \mathbb{E}_{x_f \sim \mathbb{Q}} C(x_f) \\ \tilde{D}(x_f) &= C(x_f) - \mathbb{E}_{x_r \sim \mathbb{P}} C(x_r) \end{split}$$

$$\begin{split} & \mathbf{WGAN-GP} \end{split}$$

$$\begin{split} L_D^{WGAN-GP} &= -\mathbb{E}_{x_r \sim \mathbb{P}}\left[C(x_r)\right] + \mathbb{E}_{x_f \sim \mathbb{Q}}\left[C(x_f)\right] + \lambda \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}}\left[\left(||\nabla_{\hat{x}} C(\hat{x})||_2 - 1\right)^2\right] \\ L_G^{WGAN-GP} &= -\mathbb{E}_{x_f \sim \mathbb{Q}}\left[C(x_f)\right] \\ \mathbb{P}_{\hat{x}} \text{ is the distribution of } \hat{x} = \epsilon x_r + (1 - \epsilon)x_f, \text{ where } x_r \sim \mathbb{P}, x_f \sim \mathbb{Q}, \epsilon \sim U[0, 1]. \end{split}$$

RSGAN-GP

$$\begin{split} L_D^{RSGAN} &= -\mathbb{E}_{(x_r, x_f) \sim (\mathbb{P}, \mathbb{Q})} \left[\log(\text{sigmoid}(C(x_r) - C(x_f))) \right] + \lambda \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}} \left[\left(||\nabla_{\hat{x}} C(\hat{x})||_2 - 1 \right)^2 \right] \\ \\ L_G^{RSGAN} &= -\mathbb{E}_{(x_r, x_f) \sim (\mathbb{P}, \mathbb{Q})} \left[\log(\text{sigmoid}(C(x_f) - C(x_r))) \right] \\ \\ \mathbb{P}_{\hat{x}} \text{ is the distribution of } \hat{x} = \epsilon x_r + (1 - \epsilon) x_f, \text{ where } x_r \sim \mathbb{P}, x_f \sim \mathbb{Q}, \epsilon \sim U[0, 1]. \end{split}$$

RaSGAN-GP

$$\begin{split} L_{D}^{RaSGAN} &= -\mathbb{E}_{x_{r} \sim \mathbb{P}} \left[\log \left(\tilde{D}(x_{r}) \right) \right] - \mathbb{E}_{x_{f} \sim \mathbb{Q}} \left[\log \left(1 - \tilde{D}(x_{f}) \right) \right] + \lambda \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}} \left[\left(|| \nabla_{\hat{x}} C(\hat{x}) \ ||_{2} - 1 \right)^{2} \right] \\ L_{G}^{RaSGAN} &= -\mathbb{E}_{x_{f} \sim \mathbb{Q}} \left[\log \left(\tilde{D}(x_{f}) \right) \right] - \mathbb{E}_{x_{r} \sim \mathbb{P}} \left[\log \left(1 - \tilde{D}(x_{r}) \right) \right] \\ \tilde{D}(x_{r}) &= \text{sigmoid} \left(C(x_{r}) - \mathbb{E}_{x_{r} \sim \mathbb{Q}} C(x_{f}) \right) \\ \tilde{D}(x_{f}) &= \text{sigmoid} \left(C(x_{f}) - \mathbb{E}_{x_{r} \sim \mathbb{P}} C(x_{r}) \right) \\ \mathbb{P}_{\hat{x}} \text{ is the distribution of } \hat{x} = \epsilon x_{r} + (1 - \epsilon) x_{f}, \text{ where } x_{r} \sim \mathbb{P}, x_{f} \sim \mathbb{Q}, \epsilon \sim U[0, 1]. \end{split}$$

Challenges in GANs

• Mode collapse

Generator produces samples with a limited set of modes

- ✓ Wasserstein loss
- Unrolled and packing
- Convergence failure
 - ✓ Adding noise to discriminator inputs
 - Penalizing discriminator weights
 - Relativistic metrics

• Vanishing gradient

- ✓ Gradient Penalty
- Spectral Normalization
- Result evaluation
 - ✓ Inception Score
 - Fréchet Inception Distance (FID, MiFID)

Survey

bit.ly/41Glmq3